MIT OpenCourseWare http://ocw.mit.edu

2.72 Elements of Mechanical Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.72

Elements of Mechanical Design

Lecture 10: Bolted joints

Bolted joint +'s and -'s

Good:

- □ Low cost?
- □ Able to be disassembled
- □ Strong
- Compatible with almost any material

Bad:

- □ Takes up a lot of space
- □ Micro-slip/hysteresis/damping problems
- Difficult to model and control
- Can require long fabrication and assembly time

Bolted joints: Their purpose

Bolted joints = connectors, impact many parts:

Stiffness Vibration Damping Stability Load capacity

Bolted joints are semi-permanent!

- □ Max benefit obtained when it is highly preloaded, i.e. near the yield point
- □ Threads can plastically deform/work harden
- □ Some elements of bolted joints are not reusable

Bolted joints are used to create assemblies that resist:

(i) Tensile loads (ii) Moments

(iii) Shear loads

Bolts are NOT meant to resist (i) – (iii)

Anatomy of a bolted joint

1

🗆 Grip

A Tensile stress area Ad Major diameter area l_{t} Threaded length in grip l_{d} Unthreaded length in grip

□ Major diameter (unthreaded)

Joint components: Clamped member

Things to consider with the clamped member:

Bolted joint components: Bolt

NEVER in shear or bending

- Stress concentrations at the root of the teeth
- □ Fatigue crack propagation!
- □ Exception: Shoulder bolts

Keep threads clean & lubed to minimize losses

- ~50% power to bolt head friction
- ~40% power to thread friction
- ~10% power to deforming the bolt and flange

Bolted joint components: Washers

Purpose of Washers:

□ Spacer

Bolted Joint Components: Nut

Threads plastically deform -> Bolts are used once for precision applications

Preload

While preloading joint, are the flange & bolt "springs" in parallel or in series?

Series:

- Same Forces
- Different Displacements (stretches)

- Same Displacements (stretches)
- Different Forces

 $\frac{F_{\text{preload}}}{K_{\text{flange}}} = Flange \text{ Compression}$

 $\frac{F_{\text{preload}}}{K_{\text{Bolt}}} = \text{Bolt Stretch}$

Preloaded joint modeled as series spring

Need to find equivalent bolt and member stiffness

Bolt stiffness

The effective threaded grip length, l_t^* , used in the stiffness calc is the sum of the threaded grip length plus three threads

Shoulder bolt/cap screw consists of two different parts

- □ Threaded
- Unthreaded

Each has different

- Cross sectional area
- Axial stiffness

The load passes through both

- □ They act in series
- □ This is a series spring calculation

Member stiffness

© Martin Culpepper, All rights reserved

Pressure cone exists in the member materials and bolt head

The clamping area at the member interfaces depends upon

- \Box Washer diameter, d_w
- $\hfill\square$ Half-apex angle, α
- \Box Bore clearance, d_h

Stiffness calculation by integration through the depth of the member

$$k_{m} = \frac{\pi E d \tan(\alpha)}{\ln\left[\frac{\left(d_{w} - d_{h} + 2t \tan(\alpha)\right)\left(d_{w} + d_{h}\right)}{\left(d_{w} + d_{h} + 2t \tan(\alpha)\right)\left(d_{w} - d_{h}\right)}\right]}$$

Tensile loads in bolted joints

□ Preload

Ρ

 \mathbf{F}_{i}

□ External tensile load

P_b Portion of P taken by bolt

P_m □ Portion of P taken by members

C D F

Fraction of P carried by bolt

1-C

□ Fraction of P carried by members

Forces in the bolt and the members

When loaded with a tensile force

- □ Most of the force is taken by the members
- □ Very little (<15%) of the force is taken by the bolt
- □ For most, this is counter intuitive....

Forces in the bolt and the members

So how much does each see?

- $\square P_m = Portion of P taken by members$
- $\square P_{b} = Portion of P taken by bolt$

$$P_b = \frac{k_b}{k_m + k_b} P = P C$$

$$k_{m} \qquad P = P_{m} + P_{b} \qquad P_{m} = P(1-C)$$

$$k_{m} \qquad \delta = \frac{P_{b}}{k_{b}} = \frac{P_{m}}{k_{m}} \qquad F_{b} = P_{b} + F_{i}$$

$$F_{m} = P_{m} - F_{i}$$
High preload = High load capacity
$$F_{b} = CP + F_{i} \qquad F_{m} = (1-C)P - F_{i}$$

What happens when joint separates?

Static load capacity

Typically the bolt fails first, why?

- □ It is the least expensive
- □ It is the most easily replaced

Proof load and stress

$$\Box S_p = \text{proof stress} = \text{Limiting value of } \sigma_b (\sim 0.85 \sigma_y)$$

$$\frac{C n P}{A_t} + \frac{F_i}{A_t} = S_p$$

Load factor (like a factor of safety)

 \Box n > 1 ensures $\sigma_{b} < S_{p}$

How high should the pre-load be?

□ Non-permanent: Some suggest 0.75 F_p □ Permanent: Some suggest 0.90 F_p

 $n = \frac{S_p A_t - F_i}{C P}$

 $\sigma_b = \frac{CP}{A} + \frac{F_i}{A}$

Shear resistance

When joint is in shear

- □ Friction between the members takes the load, not the bolt
- □ Coefficient of friction and preload are the important properties
- Dowel pins or shoulder bolts should be used to resist shear

Torque, friction,

preload

Bolt torque and preload

How to measure

- □ Via stretch = but impractical
- □ Via strain = expensive built-in bolt sensor
- □ Via torque = not "ultra-repeatable" but easy and most often used

Relationship between Torque and Stretch?

$$E_{Torque} = E_{friction} + E_{stretch}$$

How much do you torque the bolt when tightening?

- □ Too little = weak, compliant joint
- □ Too much = bolt may break or the joint may bulge
- □ Usually torque the bolt until Proof Load is reached

Continuous tightening is important: $\mu_s > \mu_k$

Best practices

Best practices

Threads should be at least 1.5 D deep for bolt to reliably hold a load

© Martin Culpepper, All rights reserved

Applications: Gasket / roller bearings

Roller Bearings

Wave washers can reduce tightening sensitivity to achieve desired preload.

Exercise

The tool holder stiffness is critical to lathe accuracy.

Calculate the stiffness of the bolted joint between your tool holder and cross slide bearing.

How does the relative stiffness of this compare with the stiffness of other parts in the load path?

- □ Structure
- Bearings
- Rails
- □ Etc...

Preventing Bolts from Coming Loose

How do you prevent bolts from coming loose?

- 1. Use the joint in a low vibration environment
- 2. Use bolts with fine threads (small pitch)
- 3. Use a large preload
- 4. Use materials with high coefficients of friction
- 5. Use Loctite on the threads
- 6. Use an adhesive between the bolt head and flange
- 7. Use lock washers

Applications: Bearing Rails

Applications: Bearing Rails

Objectives:

- Maximize stiffness
- Decrease manufacturing cost
- Maximize accuracy

Accuracy is maximized by overlapping strain cones. Therefore, the thicker the rail, the few bolts are necessary. But the rail becomes less stiff.

Same stiffness

Bolt spacing should be about 4x the bolt diameter