MIT OpenCourseWare http://ocw.mit.edu

2.72 Elements of Mechanical Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.72Elements of Mechanical Design Lecture 09: Alignment

Schedule and reading assignment

Quiz

- □ Thursday: Hale 6.1
- □ Soon: Bolted joint qualifying quiz

Topics

- □ Lab notebooks
- □ Alignment methods
- □ Kinematic coupling grade bump = $\frac{1}{2}$ grade for use/design

Reading assignment

- *Read:* 8.2
- Examples: All in 8.2

Lab notebooks

Technical quality/quantity

- □ Appropriate equations, codes
- Units
- Important results highlighted/boxed/noted/explained

Graphical quality/quantity

- □ Appropriate sketches/pictures
- □ Pasted CAD/etc...

Archival quality

- □ Can this be copied?
- □ Understood by others?

Best practices

- Dating and number of pages
- Permanent pen
- □ No blank spaces (X out)

Ideal alignment interface

Repeatable

Accuracy

Stiffness (sensitive?)

Load capacity

"Perfect" constraint

Lowest energy state

High natural frequency

Pin-hole

3 – 2 – 1 Alignment schemes

Exact constraint couplings

Exact constraint (EC):

- □ Constraints = DOF to be constrained
- Deterministic saves \$
- □ Balls (inexpensive) & grooves (more difficult to make)

In KC design the issues are:

- □ KNOW what is happening in the system (coupling)
- MANAGE forces, deflections, stresses and friction

Passive kinematic couplings

Fabricate and forget

1/4 micrometer with best practices, 10s of nm recently

What is important?

- Contact forces
- Contact stress
- □ Stiffness vs. geometry
- Stiffness vs. preload
- □ Friction & settling
- Thermal loading
- Preload repeatability

Preload (nesting load) is the force applied to keep the coupling components engaged and prevent tipping

Modeling round interfaces

Friction and lubrication

The trend of the data is important

Wear in vs. "snow balling"

Magnitude depends on coupling design and test conditions

© Martin Culpepper, All rights reserved

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.