MIT OpenCourseWare http://ocw.mit.edu

2.72 Elements of Mechanical Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.72Elements of Mechanical Design Lecture 08: Flexures

Schedule and reading assignment

Quiz

- □ Today: Bearing layouts (mid-class)
- □ Thursday: Hale 6.1
- □ Soon: Bolted joint qualifying quiz

Topics

□ Flexure constraints and bearings... Degrees of Freedom

Reading assignment

□ Thursday:

- Layton Hale's thesis Read 2.6, 2.7, 6.1, skim rest of Chapter 6
- Chapter 7 is cool to look at

□ Tuesday:

- *Read*: 8.1, 8.3 8.5, 8.7, 8.9 8.11
- Skim: 8.6, 8.8, 8.12

Examples drawn from your lathe

Mechanisms: Compliant vs. rigid

Rigid mechanisms

- □ Sliding joints
- □ 100s of nm resolution
- □ Large range
- □ kg load capacity

Compliant mechanisms

□ Motion from member compliance

- □ Angstrom resolution
- □ Limited range
- □ Limited load capacity

Images removed due to copyright restrictions. Please see http://www.physikinstrumente.com/en/primages/pi_m850_tip_i4c_o_eps.jpg http://www.hexapods.net/images/M850Ani160-1-slow.gif

Micro-scale precision machines

Static

SEM: Drs. Andras Vladar & Jason Gorman (NIST) FIB: Dr. Konrad Jarush (Hitachi)

X95 200mm 0000 26/AUG/04 50 10 µ

© Martin Culpepper, All rights reserved

Courtesy of Andras Vladar, Jason Gorman, and Konrad Jarausch. Used with permission.

Meso-scale devices: Biomedical

Nano-scale devices

Meso-scale precision machines

Nano-scale devices

© Martin Culpepper, All rights reserved

Dip pen nanolithography on DNA arrays

What is fundamentally different?

- $\Box \ Size \rightarrow Physics \rightarrow Fabrication$
- Raw materials
- □ Surfaces vs. points or lines

Images removed due to copyright restrictions. Please see

http://mcf.tamu.edu/images/DPN_process.png

http://www.nanoink.net/d/Nano%20-%20Part%201_Sm_Lo-Res_240x180.wmv

http://images.iop.org/objects/nano/news/4/12/10/diagnal.jpg

250 mm Courtesy PI

Nanomanufacturing

Advantages of flexures

Advantages

- □ Smooth, fine motion
- □ Linear/elastic operation in absence
- □ Failure modes are well understood
- Monolithic or assembled
- □ 2D nature lends to 2¹/₂D mfg.
- □ Miniaturization

Disadvantages

- Accuracy and repeatability sensitive to several variables
- □ Limited motion/stroke (usually a few to 10s % of device size)
- □ Instabilities such as axial or transverse buckling
- Dynamics
- □ Sensitivity to tolerance

© Martin Culpepper, All rights reserved

Important material properties

Nominal values

- Modulus
- □ Yield stress
- Coefficient of thermal expansion
- □ Thermal diffusivity
- Density

Material property ratios

	Normalized Values			
Material	σ у/Ε	$\alpha_{diff}/\alpha_{CTE}$	Ε/ ρ	Cost
Titanium V	1.00	0.14	0.92	3.77
Aluminum 7075	0.70	1.00	1.00	1.00
Stainless 316	0.09	0.13	0.94	3.50
Invar - Annealed	0.19	0.87	0.70	5.21

© Martin Culpepper, All rights reserved

Modules

© Martin Culpepper, All rights reserved

© Martin Culpepper, All rights reserved

Review of constraint fundamentals

Rigid bodies have 6 DOF

- Constraints have lines of action
- \Box C = # of linearly independent constraints
- $\Box \text{ DOF} = 6 C \qquad \rightarrow \qquad F = 6 C$

DOF in constraint-based design

A linear displacement may be visualized as a rotation about a point which is "far" away

Two principles of projective geometry

Projective geometry comes in useful here

Parallel lines intersect at infinity

□ Translation represented by a rotation line at a hope of "infinite radius"

Image courtesy of John Hopkins MIT MS Thesis

Constraint fundamentals

Blanding's RULE OF COMPLIMENTARY PATTERNS

□ Each permissible Freedom (F) is a rotation about a line and each permissible freedom rotation line must intersect each Constraint (C)

Remember these principles of projective geometry

- Parallel lines intersect at infinity
- Translation represented by a rotation line at a hope of "infinite radius"

Blade flexure

Parallel addition rules

What is parallel? Elements are not in the same load path. Loads are split between the elements

Add constraints so where there is a common DOF, then have mechanism DOF

Example: For instance, there are no conflicts in displacement to θz

Adapted from Layton Hale's Ph.D. Thesis (MIT)

Series addition rules

What is series? -Differentiate series by load path -Shared load path = series

Series: Add DOF

Find common constraints

Follow the serial chain

Parallel and series systems

Adapted from Layton Hale's Ph.D. Thesis (MIT)

Accuracy

The accuracy of most flexures is sensitive to:

- \square 1. Small variations in dimensions, e.g. $\delta_{\text{thickness}}$
- □ 2. Young's Modulus (E)

- □ 3. Time variable errors
 - Creep
 - Stress relaxation
 - Thermal
 - Dynamic/vibration

Repeatability

Flexures can exhibit Angstrom-level repeatability if:

- □ Low material hysteresis
 - Single crystal materials useful
- No dislocation motion
 - $\sigma << \sigma_{\!_{yield}}$
- □ Load is repeatable
 - Magnitude
 - Direction
- □ Assembly is correct
 - No micro-slip
 - No friction in assembly
 - No yield during assembly

Accuracy and repeatability

Difficult to obtain without calibration or adjustment

- □ Geometry
- Materials
- □ Loading
- □ Assembly/integration
- Environmental

Links between kinematics and elasticity

Links between kinematics and elasticity

Fabrication processes: EDM

EDM positives

- □ Accuracy (micrometers)
- 🗆 3D
- □ Surface finish (sub-micrometers)

Image removed due to copyright restrictions. Please see

http://www.physikinstrumente.com/en/about/images/pi_WIREEDMC_i4c_K50_eps.jpg

EDM drawbacks

- □ Time (mm/minute)
- Cost

Fabrication processes: Waterjet

Waterjet positives

- □ Low force
- Many materials including brittle materials and heat sensitive materials
- □ Rapid (inches/min)

Images courtesy of xiaming on Flickr.

Waterjet drawbacks

- Thickness limitations
- Kerf limitations
- Draft limitations
- □ Accuracy ~ 125 micrometers

Fabrication processes: Milling/cutting

Milling/cutting positives

- □ Flexibility
- Any material
- Nearly any shape

Milling/cutting drawbacks

- □ Fixturing
- □ Compliance of parts
- □ Work hardening
- Surface damage

Image courtesy of jiskar on Flickr. Please see any other image of milling, such as http://students.washington.edu/dennyt/fsae/cnc/wc_fixtplate.jpg

Fabrication processes: Etching

Etching positives

- □ 2¹/₂ D topologies/shapes
- □ Monolithic
- □ Micron-level features

Etching drawbacks

- Dimensional control
- □ Scallops

Images removed due to copyright restrictions. Please see:

http://www.ee.ucla.edu/~dejan/ee115c/ucla-graphics/IBM_metal_stack.jpg http://www.stsystems.com/uploaded_files/1101/images/scallops.jpg

Milanovic, Veljko, et al. "Deep Reactive Ion Etching for Lateral Field Emission Devices." IEEE Electronic Device Letters 21 (June 2000): 271-273.

Milanovic, Veljko, et al. "Micromachining Technology for Lateral Field Emission Devices." IEEE Transactions on Electron Devices 48 (January 2001): 166-173.

Please see 371762. "How Microprocessor Work." February 14, 2009. YouTube. Accessed October 28, 2009. http://www.youtube.com/watch?v=loMz_I_Fpx4

Assembly

Stress and energy

- Proper thickness of clamps and clamping load distribution
- □ Spring washer provide force source

Fusing

- □ Clamps members should "yield" before flexure
- □ Spring washer provide force source

Surface conformity

- □ Micro-slip is a major cause of hysteresis
- Deburring and potting/bonding

Misalignment = systematic errors

Images removed due to copyright restrictions. Please see Fig. 8.5 and 8.6 in Smith, Stuart. *Flexures: Elements of Elastic Mechanisms*. Amsterdam, Holland: Gordon & Breach, 2000.