MIT OpenCourseWare
|http://ocw.mit.edu

2.72 Elements of Mechanical Design

Spring 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

$$
\begin{gathered}
2.72 \\
\text { Elements of } \\
\text { Mechanical Design } \\
\text { Lecture 08: Flexures }
\end{gathered}
$$

Schedule and reading assignment

Quiz

- Today: Bearing layouts (mid-class)
- Thursday: Hale 6.1
- Soon: Bolted joint qualifying quiz

Topics

- Flexure constraints and bearings... Degrees of Freedom

Reading assignment

- Thursday:
- Layton Hale’s thesis - Read 2.6, 2.7, 6.1, skim rest of Chapter 6
- Chapter 7 is cool to look at
- Tuesday:
- Read: 8.1, 8.3 - 8.5, 8.7, $8.9-8.11$
- Skim: 8.6, 8.8, 8.12

Examples drawn from your lathe

Mechanisms: Compliant vs. rigid

Rigid mechanisms

- Sliding joints

Images removed due to copyright restrictions. Please see
|http://www.physikinstrumente.com/en/primages/pi_m850_tip_i4c_o_eps.jpg
|http://www.hexapods.net/images/M850Ani160-1-slow.gif

- 100s of nm resolution
- Large range
- kg load capacity

Compliant mechanisms

- Motion from member compliance
- Angstrom resolution
- Limited range
- Limited load capacity

Micro-scale precision machines

Static

Meso-scale devices: Biomedical

Nano-scale devices

Meso-scale precision machines

Nano-scale devices

Dip pen nanolithography on DNA arrays

What is fundamentally different?

- Size \rightarrow Physics \rightarrow Fabrication
- Raw materials

Images removed due to copyright restrictions. Please see
|http://mcf.tamu.edu/images/DPN_process.png
|http://www.nanoink.net/d/Nano\%20-\%20Part\%201_Sm_Lo-Res_240x180.wmv |http://images.iop.org/objects/nano/news/4/12/10/diagnal.jpg

- Surfaces vs. points or lines

250 mm
Courtesy

-20 mm

$-1 \mathrm{~mm}$

Nanomanufacturing

Advantages of flexures

Advantages

- Smooth, fine motion
- Linear/elastic operation in absence
- Failure modes are well understood
- Monolithic or assembled
- 2D nature lends to $21 / 2 \mathrm{D}$ mfg.
- Miniaturization

Disadvantages

- Accuracy and repeatability sensitive to several variables
- Limited motion/stroke (usually a few to 10s \% of device size)
- Instabilities such as axial or transverse buckling
- Dynamics
- Sensitivity to tolerance

Elastomechanics ($\sigma \& \varepsilon$) relationship

Elastic
$\sigma=\varepsilon \cdot E$
\square Plastic

Material	$\sigma \mathrm{y}$ IE
Titanium V	1.00
Aluminum 7075	0.70
Stainless 316	0.09
Invar - Annealed	0.19

Important material properties

Nominal values

- Modulus
- Yield stress
- Coefficient of thermal expansion
- Thermal diffusivity
- Density

Material property ratios

	Normalized Values			
Material	бy/E	$\alpha_{\text {diff }} / \alpha_{\text {cTE }}$	Elp	Cost
Titanium V	1.00	0.14	0.92	3.77
Aluminum 7075	0.70	1.00	1.00	1.00
Stainless 316	0.09	0.13	0.94	3.50
Invar - Annealed	0.19	0.87	0.70	5.21

Modules

Lever

Chevron

© Martin Culpepper, All rights reserved

Modules cont.

Modules cont.

Flexure hinge

Torsion

Parallel four bar

Double parallel four bar

Module cont.: Cross flexure pivot

 Deformation scale 1 : 1
© Martin Culpepper, All rights reserved

Review of constraint fundamentals

Rigid bodies have 6 DOF

- Constraints have lines of action
- C = \# of linearly independent constraints
\square DOF $=6-\mathrm{C} \quad \rightarrow \quad \mathrm{F}=6-\mathrm{C}$

DOF in constraint-based design

A linear displacement may be visualized as a rotation about a point which is "far" away

Two principles of projective geometry

Projective geometry comes in useful here

- Parallel lines intersect at infinity
- Translation represented by a rotation line at a hope of "infinite radius"

Image courtesy of John Hopkins MIT MS Thesis

Constraint fundamentals

Blanding's RULE OF COMPLIMENTARY PATTERNS

- Each permissible Freedom (F) is a rotation about a line and each permissible freedom rotation line must intersect each Constraint (C)

Remember these principles of projective geometry

- Parallel lines intersect at infinity
- Translation represented by a rotation line at a hope of "infinite radius
$R=6-C=6-5=1 .$. so where is it?
$\left(\mathrm{C}_{2}\right)$
© Martin Culpepper, All rights reserved

Examples

There will be a quiz on this NC

Flexure bearing systems

Spherical ball joint

Flexure bearing systems

Blade flexure

$$
\left\lvert\, \begin{aligned}
& -\bar{C}=\bar{F} \mid \\
& 6-\bar{\prime} \mid
\end{aligned}\right.
$$

Flexure bearing systems

Parallel guiding mechanism

Flexure bearing systems

Doodle hopper...

| $6-\bar{C}=\bar{F} \mid$

Parallel addition rules

What is parallel? Elements are not in the same load path. Loads are split between the elements

Add constraints so where there is a common DOF, then have mechanism DOF

Example: For instance, there are no conflicts in displacement to θz

Series addition rules

What is series?

-Differentiate series by load path
-Shared load path = series

Series: Add DOF

Find common constraints

Follow the serial chain

Parallel and series systems

Redundancy does not add Degrees of freedom

Accuracy

The accuracy of most flexures is sensitive to:

- 1. Small variations in dimensions, e.g. $\delta_{\text {thickness }}$
- 2. Young's Modulus (E)
- 3. Time variable errors
- Creep
- Stress relaxation
- Thermal
- Dynamic/vibration

Repeatability

Flexures can exhibit Angstrom-level repeatability if:

- Low material hysteresis
- Single crystal materials useful
- No dislocation motion
- $\sigma \ll \sigma_{\text {yield }}$
- Load is repeatable
- Magnitude
- Direction
- Assembly is correct
- No micro-slip
- No friction in assembly
- No yield during assembly

Accuracy and repeatability

Difficult to obtain without calibration or adjustment

- Geometry
- Materials
- Loading
- Assembly/integration
- Environmental

Links between kinematics and elasticity

Cantilever
$\delta=\frac{F \cdot L^{3}}{3 \cdot E \cdot I}$
$I=\frac{1}{12} \cdot b \cdot h^{3}$

$$
F=\left(\frac{E \cdot b}{4} \cdot\left[\frac{h}{L}\right]^{3}\right) \cdot \delta
$$

$$
k=\frac{d F}{d \delta}=\frac{d}{d \delta}\left\{\frac{E \cdot b}{4} \cdot\left[\frac{h}{L}\right]^{3} \cdot \delta\right\} \rightarrow \frac{E \cdot b}{4} \cdot\left[\frac{h}{L}\right]^{3}
$$

Links between kinematics and elasticity

Cantilever

$$
\begin{aligned}
& k+\Delta k=\frac{E \cdot(b+\Delta b)}{4} \cdot\left[\frac{h+\Delta h}{L-\Delta L}\right]^{3} \rightarrow \frac{E \cdot b}{4} \cdot\left[\frac{h}{L}\right]^{3} \cdot\left(1.05 \cdot\left[\frac{1.05}{0.95}\right]^{3}-1\right)=k \cdot(1+0.42) \\
& \Delta k=0.42 \cdot k
\end{aligned}
$$

Fabrication processes: EDM

EDM positives

- Accuracy (micrometers)
- 3D
- Surface finish (sub-micrometers)
|http://www.physikinstrumente.com/en/about/images/pi_WIREEDMC_i4c_K50_eps.jpg

EDM drawbacks

- Time (mm/minute)
- Cost

Fabrication processes: Waterjet

Waterjet positives

- Low force
- Many materials including brittle materials and heat sensitive materials
- Rapid (inches/min)

Images courtesy of kiaming on Flickr.

Waterjet drawbacks

- Thickness limitations
- Kerf limitations
- Draft limitations
- Accuracy ~ 125 micrometers

Fabrication processes: Milling/cutting

Milling/cutting positives

- Flexibility
- Any material
- Nearly any shape

Milling/cutting drawbacks

- Fixturing
- Compliance of parts

- Work hardening
- Surface damage

Fabrication processes: Etching

Etching positives

- $21 / 2$ D topologies/shapes
- Monolithic
- Micron-level features

Etching drawbacks
 - Dimensional control
 - Scallops

Images removed due to copyright restrictions. Please see:
|http://www.ee.ucla.edu/~dejan/ee115c/ucla-graphics/IBM_metal_stack.jpg
|http://www.stsystems.com/uploaded_files/1101/images/scallops.jpg
Milanovic, Veljko, et al. "Deep Reactive Ion Etching for Lateral Field Emission Devices." IEEE Electronic Device Letters 21 (June 2000): 271-273.

Milanovic, Veljko, et al. "Micromachining Technology for Lateral Field Emission Devices." IEEE Transactions on Electron Devices 48 (January 2001): 166-173.

Please see 371762. "How Microprocessor Work." February 14, 2009.
YouTube. Accessed October 28, 2009.
http://www.youtube.com/watch?v=loMz_I_Fpx4

Assembly

Stress and energy

- Proper thickness of clamps and clamping load distribution
- Spring washer provide force source

Fusing

- Clamps members should "yield" before flexure
- Spring washer provide force source

Surface conformity

- Micro-slip is a major cause of hysteresis
- Deburring and potting/bonding

Misalignment = systematic errors

