MIT OpenCourseWare http://ocw.mit.edu

2.72 Elements of Mechanical Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.72Elements of Mechanical Design Lecture 07: Rolling contact bearings

Schedule and reading assignment

Quiz

□ Constraints

Topics

- Bearing types & failure modes
- □ Experimental results to modeling
- Bearing load-life-reliability
- □ Start spindle exercise

Reading assignment

□ None, work on getting bearings de

Quiz Tuesday

Bearings (conceptual)

WWW.renault4.co.uk/ Courtesy of Clementine's Renault 4 Garage. Used with permission.

Besides the children's toy (sorry bout that), what do you notice about the bearing that should be of import?

© Martin Culpepper, All rights reserved

Loose ends

Thermal stability

- □ Function of separation distance and contact geometry cancellation
- □ Will you always have bearing death if it is not thermally stable?

Mounting of races: Inside rotating vs. outside rotating

- □ Friction torques
- □ Look at the tapered roller example from lab

Rough design steps – Inherently iterative

Step 1: Functional requirements

- □ DOF
- □ Stiffness
- □ Lifetime/reliability
- □ Etc...

Step 2: Bearing type/layout

Step 3: System design & mfg issues

- □ Housing geometry
- □ Shaft deflection
- □ Thermal

Shaft geometry Preload Tolerances

Step 4: Assembly specifications

© Martin Culpepper, All rights reserved

Iteration

Types of rolling contact bearings

Examples of rolling element bearings

Images removed due to copyright restrictions. Please see:

http://www.timken.com/en-us/products/bearings/productlist/ball/PublishingImages/radialball_150.jpg

http://images.machinedesign.com/images/archive/news1300jpg_00000036367.jpg

http://www.bearingsworld.com/image/pic-cp02.jpg

http://www.rlmcor.com/image-product/23134mbw33.jpg

Elements: Rotary rolling contact bearing

Inner

Ring	Race	
Outer	Race	
Diamotors	Nacc	
	Bore	
Ball/roller		
Cage/separator		
Face		
Width		

Bearing failure: Causes and failure mode

Cracks in bearings elements

Images removed due to copyright restrictions. Please see

http://www.amstedrail.com/techinfo/media/94_1f5b.jpg http://www.amstedrail.com/techinfo/media/94_1f2d.jpg

Failure mode: Spalling

http://www.tsb.gc.ca

Courtesy the Transportation Safety Board of Canada.

Image removed due to copyright restrictions. Please see

http://www.theautoist.com/Bearing5.JPG

Causes of spalling

Spalling

□ Surface fatigue that occurs as a result of contact

Steel quality key to

making long-lasting

bearings

Seeds of failure

- □ Crack growth
- □ Inclusions
- Impact
- □ Cyclic high stress
- Degradation of the lubricant

Once it starts, what happens?

- □ Minor spalling + correct problem may slow/stop
- Typically increases in size with continued service

Image removed due to copyright restrictions. Please see:

http://www.theautoist.com/Bearing5.JPG

http://www.tsb.gc.ca

Courtesy the Transportation Safety Board of Canada.

Preload

Ball-flat elastomechanics: Hertz contact

Model ball-groove contacts as six balls on flats

Hertzian contacts act as non-linear springs

Figure by MIT OpenCourseWare.

Important relationships for ball-flat contact

$$k_n = 2 \cdot \delta^{\frac{1}{2}} \cdot R^{\frac{1}{2}} \cdot E_e$$

Location, magnitude of max shear stress

Max shear stress occurs below surface, in the member with largest R if ball and flat of same material

$$\tau_{\max}\Big|_{depth=0.48 \cdot contact \ radius}^{center of \ contact} = 0.31 \cdot \frac{1}{\pi} \cdot \left(\frac{6 \cdot F \cdot E_e^2}{R_e^2}\right)^{\frac{1}{3}}$$

Sensitivity of contact stiffness to ΔF

Preload increases stiffness $k_n = K_0 \cdot \left(R_e^{\frac{1}{3}} \cdot E_e^{\frac{2}{3}} \right) \cdot F_n^{\frac{1}{3}}$ A little preload goes a long way $\begin{bmatrix} Contact stiffness \\ Large \Delta k \text{ for small } \Delta Preload \\ 0 & 250 & 500 & 750 & 1000 \\ Fn [N] \end{bmatrix}$

Classes of preload, as % of static load capacity

Heavy	5%
Medium	3%
🗆 Light	2%

© Martin Culpepper, All rights reserved

How do you preload a bearing?

Direct

- □ Nuts pressing directly on races
- Uses compliance of contacts

Internal

- Oversized balls
- □ Uses compliance of ball-race contacts

Nuts-springs

- □ Spring in series with bearing
- □ Primarily uses compliance of spring

Many bearings come preloaded "out of the box"

Check to make sure so that you do not add preload that will act to overload

Think in terms of relative stiffness because... Figure by MIT OpenCourseWare.

□ Sensitivity of force to the displacement...

© Martin Culpepper, All rights reserved

Bearing life and reliability

Bearing life at rated reliability

Bearing life depends on:

Load and revolutions

From experimentation: For a given R, linear log behavior

Regression fit to experimental data Manufacturers provide a match of: □ Cycle rating: Revolutions For example 10⁶ or 90⁶ revs □ Load rating: Force Anything... that defines bearing failure for a given reliability This is for common reliability Given these two numbers, and: Units of revolutions

This may be used to extrapolate behavior at different loads and revs Why C vs. F? $C_i L^a{}_i = F_{design} L^a design$

Constant

© Martin Culpepper, All rights reserved

Units of force

Design life in terms of hours or revolutions?

We can think in terms of life as time if:

Dynamic
load

$$t[hr] \omega \left[\frac{rev}{\min}\right] 60 \left[\frac{\min}{hr}\right] = L$$

Revs at failure
 $C_{10} L_{10a} = F_{design} L^{a}_{a}_{design} = F_{design}(t \ \omega \ 60)^{\frac{1}{a}}$
 $C_{10} \left(t_{rated} \ \omega_{rated} \ 60\right)^{\frac{1}{a}} = F_{design} \left(t_{design} \ \omega_{design} \ 60\right)^{\frac{1}{a}}$
 $C_{10} = F_{design} \frac{\left(t_{design} \ \omega_{design} \ 60\right)^{\frac{1}{a}}}{\left(t_{rated} \ \omega_{rated} \ 60\right)^{\frac{1}{a}}}$

© Martin Culpepper, All rights reserved

Reliability vs. life

Reliability often well-predicted via Weibull distribution

- \Box x_o = minimum guaranteed value of x
- \Box θ = corresponds to 63.2 percentile of the variate (stochastic variable)
- □ b = a shape parameter (controls skew, large = right)

□ For bearings, we use this as:

$$x = \frac{L}{L_{10}}$$

Commonly used to fit experimental data; b & θ come from fit

Relationship between load, life and reliability

BUT the catalogue never tells me what happens for....

- My exact desired load
- □ My exact desired life
- □ Situations when I want a reliability that is different than R = 0.90

Relationship between load, life and reliability

Load as a function of reliability & vice versa for given:

Reliability of multi-bearing sets

What is the reliability of:

- □ One bearing?
- □ A spindle with two bearings?
- □ With N bearings?

For first order design, how should individual bearing reliability scale as a function of N?

How to handle combined loading

So far we have only considered radial loading...

What about combined radial, Fr, and axial loading, Fa?

□ Use an equivalent load, Fe, that does the same amount of damage.

$$F_e = X_i \ V \ F_r + Y_i \ F_a$$

Where V = 1.2 for outer ring rotation and 1 for inner ring

Figure by MIT OpenCourseWare.

□ This has to do with the fact that outer ring fails more often

X_i and Y_i are a function of the

□ Axial load, Fa

Static load rating, Co

Other issues, Shigley/Mischke covers well

Life recommendations (hrs)

Aircraft engines	0 500	—	2 000
24-hour critical service	100 000	_	200 000

Application factors

General commercial	1.1 – 1.3
Moderate impact	1.5 – 3.0

Group exercise

Work on your spindle housing-shaft-bearing design

- Constraint layout
- □ Loads
- □ Preload
- □ Thermal stability
- Cost