MIT OpenCourseWare
|http://ocw.mit.edu

2.72 Elements of Mechanical Design

Spring 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

Elements of

Mechanical Design
Lecture 05: Structures

Schedule and reading assignment

Quizzes
 - Quiz - None

Topics

- Finish fatigue
- Finish HTMs in structures

Reading assignment

- None
- Quiz next time on HTMs

Matrix Review

What is a Matrix?

A matrix is an easy way to represent a system of linear equations
Linear algebra is the set of rules that governs matrix and vector operations

$\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$
 "Vector"

$\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]$
"Matrix"

Matrix Addition/Subtraction

You can only add or subtract matrices of the same dimension Operations are carried out entry by entry

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right]}
\end{aligned}=\left[\begin{array}{ll}
a_{1}+b_{1} & a_{2}+b_{2} \\
a_{3}+b_{3} & a_{4}+b_{4}
\end{array}\right] .
$$

Matrix Multiplication

An $m \times n$ matrix times an $n \times p$ matrix produces an $m \times p$ matrix
$\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]\left[\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right]=\left[\begin{array}{ll}a_{1} b_{1}+a_{2} b_{3} & a_{1} b_{2}+a_{2} b_{4} \\ a_{3} b_{1}+a_{4} b_{3} & a_{3} b_{2}+a_{4} b_{4}\end{array}\right]$
(2×2)
(2 x 2)
(2×2)

Matrix Properties

Notation: $A, B, C=$ matrix,$c=$ scalar
Cumulative Law: $\quad A+B=B+A$
Distributive Law: $\quad c(A+B)=c A+c B$

$$
C(A+B)=C A+C B
$$

Associative Law: $\quad A+(B-C)=(A+B)-C$

$$
A(B C)=(A B) C
$$

NOTE that AB does not equal BA !!!!!!!

Matrix Division

To divide in linear algebra we multiply each side by an inverse matrix:

$$
\begin{aligned}
& A B=C \\
& A^{-1} A B=A^{-1} C \\
& B=A^{-1} C
\end{aligned}
$$

Inverse matrix properties:

$$
\begin{aligned}
& A^{-1} A=A A^{-1}=I \quad \text { (The identity matrix) } \\
& (A B)^{-1}=B^{-1} A^{-1}
\end{aligned}
$$

Structures

Machines structures

Structure $=$ backbone $=$ affects everything

Satisfies a multiplicity of needs

- Enforcing geometric relationships (position/orientation)
- Material flow and access
- Reference frame

Requires first consideration and serves to link modules:

- Joints (bolted/welded/etc...)
- Bearings
- Shafts
|http://www.clarkmachinetools.com/2003_1.jpg
- Parts
- Tools
- Sensors
- Actuators

Key issues with structural design

Machine concepts

- Topology
- Material properties

Image removed due to copyright restrictions. Please see
|http://www.fortune-cnc.com/uploads/images/1600ge_series.jpg

Principles

- Thermomechanical
- Elastomechanics
- Kinematics
- Vibration

Key tools that help

- Stick figures
- Parametric system/part error model

$$
\begin{aligned}
& \text { Visualization of the: } \\
& \text { Load path } \\
& \text { Vibration modes } \\
& \text { Thermal growth } \\
& \hline
\end{aligned}
$$

Modeling: stick figures

Image removed due to copyright restrictions. Please see
|http://americanmachinetools.com/images/diagram-lathe.jpg

Modeling: stick figures

1. Stick figures
2. Beam bending
3. System bend.

These types of models are idealizations of the physical behavior. The designer must KNOW:
(a) if beam bending assumptions are valid
(b) how to interpret and use the results o this type of these models

Modeling: stick figures

Transformation
 Matrices

Translational Transformation Matrix

Translational Transformation Matrix

General 2D transformation matrix

Rotational Transformation Matrix

Rotational Transformation Matrix

Rotational Transformation Matrix

$$
\begin{aligned}
& A^{\prime}=A \cos \theta+B \sin \theta \\
& B^{\prime}=-A \sin \Theta+B \cos \theta
\end{aligned}
$$

Rotational Transformation Matrix

Rotational Transformation Matrix

General 2D rotational matrix:

Homogeneous Transformation Matrix

General 2D HTM translational and rotational matrix:
$\left[\begin{array}{ccc}\cos \theta & \sin \theta & \Delta x \\ -\sin \Theta & \cos \theta & \Delta y \\ 0 & 0 & 1\end{array}\right]$

HTM Applications

Simple Beam Example

Simple Beam Example

Useful Force-deflection Equations

$$
\mathrm{d}=\frac{\mathrm{FL}}{\mathrm{EA}}
$$

$$
\mathrm{d}=\frac{\mathrm{FL}^{3}}{3 \mathrm{El}} \quad \Theta=\frac{\mathrm{FL}^{2}}{2 \mathrm{El}}
$$

$$
\mathrm{d}=\frac{\mathrm{ML}^{2}}{2 \mathrm{El}}
$$

$$
\theta=\frac{M L}{E l}
$$

Simple Beam Example

Drill Press Example

Find the HTM from a to b:

Cross-Sectional Area of large sections $=A$ Cross-Sectional Area of Drill Bit $=A_{d}$

Young's Modulus of Material $=\mathrm{E}$

Useful Force-deflection Equations

$$
\mathrm{d}=\frac{\mathrm{FL}}{\mathrm{EA}}
$$

$$
\mathrm{d}=\frac{\mathrm{FL}^{3}}{3 \mathrm{El}}
$$

$$
\Theta=\frac{\mathrm{FL}^{2}}{2 \mathrm{El}}
$$

$$
\mathrm{d}=\frac{\mathrm{ML}^{2}}{2 \mathrm{El}}
$$

$$
\theta=\frac{M L}{E l}
$$

Drill Press Example

Find the HTM from a to b:

Cross-Sectional Area of large sections $=A$ Cross-Sectional Area of Drill Bit $=A_{d}$ Young's Modulus of Material $=E$

Drill Press Example

Find the HTM from b to c :

Cross-Sectional Area of large sections $=\mathrm{A}$ Cross-Sectional Area of Drill Bit $=A_{d}$
Young's Modulus of Material $=\mathrm{E}$

Useful Force-deflection Equations

$$
\mathrm{d}=\frac{\mathrm{FL}}{\mathrm{EA}}
$$

$$
\mathrm{d}=\frac{\mathrm{FL}^{3}}{3 \mathrm{El}} \quad \Theta=\frac{\mathrm{FL}^{2}}{2 \mathrm{El}}
$$

$$
\mathrm{d}=\frac{\mathrm{ML}^{2}}{2 \mathrm{El}}
$$

$$
\theta=\frac{M L}{E l}
$$

Drill Press Example

Find the HTM from b to c :

Cross-Sectional Area of large sections $=\mathrm{A}$ Cross-Sectional Area of Drill Bit $=A_{d}$

$$
\delta=\frac{\mathrm{FL}^{3}}{3 \mathrm{El}} \quad \Theta=\frac{\mathrm{FL}^{2}}{2 \mathrm{El}}
$$

Drill Press Example

Cross-Sectional Area of large sections $=\mathrm{A}$ Cross-Sectional Area of Drill Bit $=A_{d}$ Young's Modulus of Material $=\mathrm{E}$

Useful Force-deflection Equations

$$
\mathrm{d}=\frac{\mathrm{FL}}{\mathrm{EA}}
$$

$$
\mathrm{d}=\frac{\mathrm{FL}^{3}}{3 \mathrm{El}}
$$

$$
\Theta=\frac{\mathrm{FL}^{2}}{2 \mathrm{El}}
$$

$$
\mathrm{d}=\frac{\mathrm{ML}^{2}}{2 \mathrm{EI}}
$$

$$
\Theta=\frac{M L}{E l}
$$

Drill Press Example

Cross-Sectional Area of large sections $=A$ Cross-Sectional Area of Drill Bit $=A_{d}$ Young's Modulus of Material $=\mathrm{E}$

Find the HTM from c to d:

$d H_{C}=\left[\begin{array}{ccc}\cos \theta & -\sin \Theta & -\delta_{1} \\ \sin \Theta & \cos \Theta & H+\delta_{2} \\ 0 & 0 & 1\end{array}\right]$
$\Theta=\frac{F L H}{E l} \quad \delta_{1}=\frac{F_{L H}}{2 E l} \quad \delta_{2}=\frac{F H}{E A}$

Drill Press Example

Find the HTM from d to e:

Cross-Sectional Area of Drill Bit $=A_{d}$
Young's Modulus of Material $=E$

Drill Press Example

Find the HTM from a to e:

${ }^{\mathrm{e}} \mathbf{H}_{\mathrm{a}}={ }^{\mathrm{e}} \mathbf{H}_{\mathrm{d}}{ }^{\mathrm{d}} \mathbf{H}_{\mathrm{c}}{ }^{\mathrm{c}} \mathbf{H}_{\mathrm{b}}{ }^{\mathrm{b}} \mathbf{H}_{\mathrm{a}}$

Find the vector $\overrightarrow{\mathbf{V}}_{\mathrm{e}}$ from e to a:

$$
\overrightarrow{\mathrm{a}}_{\mathrm{e}}=\mathrm{e} \mathbf{H}_{\mathrm{a}}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Cross-Sectional Area of large sections $=\mathrm{A}$ Cross-Sectional Area of Drill Bit $=A_{d}$
Young's Modulus of Material $=\mathrm{E}$

Method for building system's HTM

- Identify key nodes around the system's structural loop
- Create HTMs for each member between each node
- Multiply the member's HTMs in the correct order

More on HTMs

3D HTMs

For x-axis rotation	$\left[\begin{array}{cccc}1 & 0 & 0 & X \\ 0 & \cos \theta_{x} & \sin \theta_{x} & Y \\ 0 & -\sin \theta_{x} & \cos \theta_{x} & Z \\ 0 & 0 & 0 & 1\end{array}\right] \quad$For small θ : For y-axis rotation$\left[\begin{array}{cccc}\cos \theta_{y} & 0 & -\sin \theta_{y} & X \\ 0 & 1 & 0 & Y \\ \sin \theta_{y} & 0 & \cos \theta_{y} & Z \\ 0 & 0 & 0 & 1\end{array}\right]$
For $z-a x i s$ rotation	$\left[\begin{array}{cccc}\cos \theta_{z} & \sin \theta_{z} & 0 & X \\ -\sin \theta_{z} & \cos \theta_{z} & 0 & Y \\ 0 & 0 & 1 & Z \\ 0 & 0 & 0 & 1\end{array}\right]$

HTM Rotation

-Remember order of multiplication matters:

-To combine a translation and rotation, again multiply the HTM matrices together
-Note that the order of the rotation and translation matrices does matter, so makes sure the answer makes sense!!!

