MIT OpenCourseWare http://ocw.mit.edu

2.72 Elements of Mechanical Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.72Elements of Mechanical Design Lecture 04: Fatigue

Schedule and reading assignment

Reading quiz

Announcements

- □ Shaft due date
- □ Shaft exercise
- □ Goodman diagram quiz (Tuesday)
- Shear-moment qualifying quiz (Tuesday)

Topics

- Discuss stiffness exercises
- □ Start fatigue

Reading

□ None, for Tuesday, prep for quizzes in lab time (Given lounge, top of 35)

Please see unterhausen. "fatigue crack." March 27, 2008. YouTube. Accessed October 28, 2009. http://www.youtube.com/watch?v=iBuuVd0JIIM

Reading quiz

Discuss stiffness exercises

Answers

Intuition about stiffness

- □ Part
- □ Spindle
- □ Carriage-rail
- □ Etc...

Insight and perspective

© Martin Culpepper, All rights reserved

Carriage bearing-rail

Shaft exercise

Are you on top of this !?

Fatigue part I

At what critical time in engineering history did fatigue became relevant?

Why does fatigue failure generate serious concern?

What type of warnings does one receive?

Fire plane wing failure

July 18, 2002 near Estes Park, Colorado

- □ Both crew members killed
- Delivered in July, 1945 to the U.S. Navy
- □ Logged 8000+ flight hours

Investigation

- □ NTSB found extensive fatigue
- □ Cracks hidden from view

Please see richmondlopez13. "Plane crash caught on tape - 6." December 5, 2007. YouTube. 10 Accessed October 14, 2009. http://www.youtube.com/watch?v=j7kr6o1s9sI

Comet airplane failures

BOAC Flight 781 crashes on 10 January 1954

- Concluded fire was most likely cause
- □ Resumed on 23 March 1954

Comet G-ALYY crashes on 8 April 1954

- □ Pressure tests revealed fatigue
- □ Windows to be glued & riveted, but riveted only
- $\ \ \Box \quad Square \ windows \rightarrow oval$
- □ Skin thickened
- □ Service in 1958

I-35 bridge failure

By Laurie Blake, Paul Mcenroe, Pat Doyle and Tony Kennedy, Star Tribune

MnDOT's options:

- □ Make repairs or find flaws & bolt on steel plating
- □ Fueled emotional debate

Image from Wikimedia Commons, http://commons.wikimedia.org

MNDOT's action:

- □ Thousands of bolt holes would weaken bridge
- □ Launched inspection, interrupted by work on bridge surface

The state's top bridge engineer:

- "We chose the inspection route..... We thought we had done all we could, but obviously something went terribly wrong."
- Up until the late 1960s, it was thought that fatigue was not a phenomenon you would see in bridges."

How much do engineers know about fatigue?

How "exact" are fatigue models?

Experimental data

Figure by MIT OpenCourseWare. Adapted from Fig. 6-11 in Shigley & Mischke.

Experimental data

Figure by MIT OpenCourseWare. Adapted from Fig. 6-17 in Shigley & Mischke.

What actions and/or practices should be put in place as a result?

Testing and prevention

Where life-limb-\$ are important

- It is your job to spec out test type and procedure
- □ Balance of cost vs. risk

Example types

- □ Ultrasonic
- Liquid penetrant
- Eddy-current
- □ Leaks
- Visual

On foreseeable use

- □ Common sense
- □ Legal

© Martin Culpepper, All rights reserved

Many people listen to REAL data Few people listen to Eqxns Stiffness/impulse A choice: Job vs. safety

> Images removed due to copyright restrictions. Please see http://www.labino.com/bilder/applications/00533 RT8.jpg http://www.riverinaairmotive.com.au/img/mpi001.jpg

Where do cracks come

Potential crack origins/causes

Inherent to material

- □ Imperfections, e.g. castings
- □ Precipitates, e.g. Al 6061 T6
- □ Coalescing of internal dislocations
- □ Grain boundaries

Fabrication-related

- □ Tool marks
- □ Improper assembly, e.g. forcing (car suspension-cast materials)
- □ Thermally induced Weld cracks and related HAZ problems

Use-related

- □ High stress areas
- □ Scratches
- □ Unintended use/damage/loading (e.g. 3 finger tight and paint lid)

Image removed due to copyright restrictions. Please see http://www.emeraldinsight.com/fig/2190080205007.png

Images removed due to copyright restrictions. Please see:

http://www.metallographic.com/Images/Zn-Al.jpg

http://corrosionlab.com/Failure-Analysis-Studies/Failure-Analysis-Images/

20030.SCC.304H-pipeline/20030.microstructure-ditched-grain-boundaries.jpg

and

Fig. 4b in Henderson, Donald W., et al. "The Microstructure of Sn in Near-Eutectic Sn-Ag-Cu Alloy Solder Joints and its Role in Thermomechanical Fatigue." *Journal of Materials Research* 19 (June 2004): 1608-1612

or

Slide 36 in Kang, Sung K. "Near-Ternary Sn-Ag-Cu Solder Joints; Microstructure, Thermal Fatigue, and Failure Mechanisms." Pb-Free Workshop, TMS Annual Meeting, February 2005.

Fatigue life review

Ferrous materials/allows: Se ~ 1 000 000 – 10 000 000

Under ideal conditions

Non-ferrous (i.e. aluminum) generally no Se...

Do we use AI in places where fatigue is important?...

□ Aircraft...

□ History Channel Boneyard...

Science vs. engineering...

Methods

□ Stress

Strain

□ Fracture mechanics

Fatigue and ethical responsibility

You will be criminally negligent if you do not augment calculations with **TESTING** for critical fatigue applications Life-limb-\$

Real life

Please see datsun_laurel. "R06 Front Carbon ARB Fatigue Test." Photobucket. Accessed October 14, 2009. http://s23.photobucket.com/albums/b388/datsun_laurel/FSAE/?action=view¤t=ARB_Test.flv

Real life

http://video.google.com (author?)

© Martin Culpepper, All rights reserved

Please see SmithersMpls. "Carbon Frame Fatigue Test." February 9, 2007. YouTube. ^d Accessed October 14, 2009. http://www.youtube.com/watch?v=QHO_VjVhaE8

Real life

http://yourdailymedia.com

© Martin Culpepper, All rights reserved

Please see motocross. "The Nitro Circus: Channel 9 Action News." March 3, 2009. YouTube. Accessed October 14, 2009. http://www.youtube.com/watch?v=kOaYruVcvm4

What reasonable hypotheses could one hold for identifying important factors?

Fatigue life modifiers

Experimental results are used to obtain modifiers

 $S_e = \left(k_a \ k_b \ k_c \ k_d \ k_e \ k_f\right) S'_e$

Where:

🗆 k _a	=	Surface condition modification factor		
🗆 k _b	=	Size modification factor		
🗆 k _c	=	Load modification factor		
🗆 k _d	=	Temperature modification factor		
🗆 k _e	=	Reliability modification factor		
\Box k _f	=	Others		
□ S' _e	=	Rotary-beam test endurance limit		
□ S _e	=	Predicted endurance limit for your par		

Endurance limit depends on many factors

For ferrous materials, the following approximations may be used for first pass design

This is for ideal conditions... but designs are never ideal

29

© Martin Culpepper, All rights reserved

Figure by MIT OpenCourseWare. Adapted from Fig. 6-8 and 6-9 in Shigley & Mischke.

Experimental data

Figure by MIT OpenCourseWare. Adapted from Fig. 6-17 in Shigley & Mischke.

Fatigue life modifiers: Surface condition

Experimental results are used to obtain modifiers

$$k_a = a S^b_{ut}$$

Where:

- □ a = function of fabrication process
- □ b = function of fabrication process
 - Why does finish matter?

Carlo og finisk	Fact	Exponent b	
Surface finish	S _{ut} , kpsi	S _{ut} , MPa	
Ground	1.34	1.58	-0.085
Machined or cold-drawn	2.70	4.51	-0.265
Hot-rolled	14.4	57.7	-0.718
As-forged	39.9	272.	-0.995

© Martin Culpepper, All rights reserved

Figure by MIT OpenCourseWare. Adapted from Table 6-2 in Shigley & Mischke.

Why would surface condition matter?

Surface roughness review

Common surface roughness (R_a in micro-inches) **Process** 2 1 2000 1000 500 250 125 63 32 16 4 1/2 8 Sawing Drilling Milling Turning Grinding Polishing

Only specify what you need & know your processes

Why would part size matter?

Fatigue life modifiers: Size factor

For bending and torsion of a round bar:

$k_{b} = \begin{array}{l} 0.879 \ d^{-0.107} & for \quad 0.11 in < d < 2.00 in \\ 0.910 \ d^{-0.157} & for \quad 2.00 in < d < 10.0 in \end{array}$

For axial loading:

 $k_{b} = 1$

What if the bar is not round?

- □ Use a 95 percent stress area
- □ Equate volumes, length drops out
- Relate cross sectional area of round and square bar

$$d_e = 0.808(hb)^{0.5}$$

Why would the type of loading matter?

Fatigue life modifiers: Loading factor

For bending and torsion of a round bar:

1.00bending $k_c = 0.85$ axial0.59torsion

Why would temperature matter?

Fatigue life modifiers: Temperature factor

The effect of increasing temperature

- □ Yield strength typically decreases
- □ May be no fatigue limit for material-temperature combos

The temperature factor

- □ May be ESTIMATED from existing tables
- Should ALWAYS BE DETERMINED EXPERIMENTALLY FOR YOUR GIVEN MATERIAL.

Relate strength at temperature to room temp. strength

$$k_d = \frac{S_T}{S_{RT}}$$

Fatigue life modifiers: For an example steel

Temperature, °C	S _T /S _{RT}	Temperature, °F	S _T /S _{RT}
20	1.000	70	1.000
50	1.010	100	1.008
100	1.020	200	1.020
150	1.025	300	1.024
200	1.020	400	1.018
250	1.000	500	0.995
300	0.975	600	0.963
350	0.943	700	0.927
400	0.900	800	0.872
450	0.843	900	0.797
500	0.768	1000	0.698
550	0.672	1100	0.567
600	0.549		

Figure by MIT OpenCourseWare. Adapted from Table 6-4 in Shigley & Mischke.

Part II

Calculations

How do statistics and probability come into play?

Standard normal distribution, mean = 0

Standard normal distribution curve generated via the probability distribution

• Area under the curve = 1 $f(z) = \frac{1}{\hat{\sigma}_x \sqrt{2\pi}} \exp\left[-\frac{1}{2}(z)^2\right]$

This will be covered in the 2nd design lab

What if mean is not 0?

Non-zero means in Gaussian distributions

A normal Gaussian distribution is typically observed in fatigue behavior of parts

Only one table for values needed to find the area between z values... © Martin Culpepper, All rights reserved

Fatigue life modifiers: Reliability factor

Example use of standard normal distribution

In a shipment of 250 connecting rods, the mean tensile strength is 45 kpsi and the standard deviation is 5 kpsi

- (a) Assuming a normal distribution, how many rods may be expected to have a strength less than 39.5 kpsi?
- (b) How many are expected to have a strength between 39.5kpsi and 59.5kpsi?

$$\mathbf{z}_{39.5} = \frac{\mathbf{x} - \mu_x}{\hat{\sigma}_x} = \frac{39.5 - 45.0}{5.0} = -1.10$$

$$\Phi(\mathbf{z}_{39.5}) = \Phi(-1.10) = 0.1357$$

$$N \cdot \Phi(\mathbf{z}_{39.5}) = 250 \times 0.1357 = 33.9 \approx 34$$

$$(-1.1) = 0.1357 = -1.1$$

Fatigue life modifiers: Reliability factor

Most strength data is reported as mean values

- Standard deviations typically less than 8%, but you MUST KNOW what it is... run experiments...
- □ 68% of all measurements fall within one standard deviation
- □ 95% of all measurements fall within two standard deviations

 \Box For $\sigma \sim 8\%$

How do we do 1st order fatigue modeling/analysis?

Fluctuating stresses

Stress values of concern

- $\square \sigma_{min} \qquad \text{Minimum stress}$
- $\Box \sigma_{max}$ Maximum stress
- $\Box \sigma_a$ Amplitude component = $(\sigma_{max} \sigma_{min})/2$
- $\Box \sigma_{m}$ Midrange component = $(\sigma_{max} + \sigma_{min})/2$
- $\Box \sigma_s$ Steady component
- \Box R Stress ratio = σ_{min} / σ_{max}
- \Box A Amplitude ratio = σ_a / σ_m

© Martin Culpepper, All rights reserved

Note the correction to σa and σm

Fluctuating stresses

Figure by MIT OpenCourseWare. Adapted from Fig. 6-25 in Shigley & Mischke.

Fatigue diagram: Goodman

Stress concentration and notch sensitivity

Fatigue is due to crack propagation, hence notch sensitivity is important

□ Max stress

$$\sigma_{\max} = K_f \sigma_o$$

K_t from table A-15

$$\tau_{\max} = K_{fs} \tau_o$$

□ Notch sensitivity, q (usually 0 < q < 1) accounts for material sensitivity

- $K_f = 1 + q (K_t 1)$
- $K_{fs} = 1 + q_{shear}(K_{ts}-1)$

Table 6-21

Table 6-20

It is always safe to use K_t

K_t rarely > 3 for good/practical designs, but check!

Example

1.5 in diameter AISI 1050 cold drawn steel ($S_y = 84$ kpsi, S_{ut} = 100 kpsi) withstands a tensile load that ranges from 0 to 16000 lbf. K_f = 1.85, k_a = 0.797, k_b = 1, k_d = 1, k_c = 0.923. (8th edition has k_c = 0.85)

Modifications in example:

 \Box kc = 0.85 in 8th edition

 \Box Se = $\frac{1}{2}$ Sut in 8th edition

 $\hfill\square$ a. Factor of safety if σa held constant

 $\hfill\square$ b. Factor of safety if σm held constant

 \Box c. Factor of safety if $\sigma a/\sigma m$ = constant

 \Box S_e = k_ak_bk_ck_dS'_e = k_ak_bk_ck_d (0.5 S_{ut}) = 33.9kpsi

Example modified for 8th edition

Part b: σ_a held constant

Part a: σ_m held constant

Part c: σ_a / σ_m held constant

What about your shaft?

Step 1: Free body diagram

- □ Cutting forces (2.008 person and/or next week)
- Driving loads
- Reaction loads
- □ Preloads
- □ Others... OS! loads?

I can be here Saturday to help, if people ask!!!

Step 2: Parametric geometry & load variables

- **Step 3: Material properties**
- **Step 4: Force magnitudes estimates/calculations**

Step 5: Stress & fatigue

 $\square \ \sigma_x, \, \sigma_y, \, \tau_{xy}, \, \mathsf{K}_t, \, \mathsf{q}, \, \mathsf{K}_f, \, \sigma_a, \, \sigma_m, \, \sigma_s, \, \sigma_x,$

In the end, SH... so you should program this into excel:

- □ In case you need to change variables... there are always changes!
- □ Optimization in excel.