MIT OpenCourseWare
|http://ocw.mit.edu

2.72 Elements of Mechanical Design

Spring 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

$$
\begin{gathered}
\text { Elements of } \\
\text { Mechanical Design } \\
\text { Lecture 03: Shafts }
\end{gathered}
$$

Schedule and reading assignment

Reading quiz

Hand forward lathe exercise quiz

Topics

- Finish matrices, errors
- Shaft displacements
- Stiffness exercise

Reading assignment

- Shigley/Mischke
- Sections 6.1-6.4: 10ish pages \& Sections 6.7-6.12: 21ish pages
- Pay special attention to example 6.12 (modified Goodman portion)

Deflection within springs and shafts

Shafts, axles and rails

Shafts

- Rotating, supported by bearings/bushings
- Dynamic/fluctuating analysis

Axles

- Non-rotating, supported by bearings/bushings
- Static analysis

Rails

- Non-rotating, supports bearings/bushings
- Static analysis

Examples drawn from your lathe

Examples drawn from your lathe

In practice, we are concerned with

Deflection

- Stiffness
- Bearings and stiffness of connectivity points
- Function of global shaft geometry, sometimes adjacent components

Stress

- Catastrophic failure:

Ductile
Brittle
Fatigue

- Function of local shaft geometry

What is of concern?

Deflection and stiffness

- Beam bending models
- Superposition

Load and stress analysis

- Bending, shear \& principle stresses
- Endurance limit
- Fatigue strength
- Endurance modifiers
- Stress concentration
- Fluctuating stresses

Failure theories

- Von Mises stress
- Maximum shear stress

Materials

Steel vs. other materials

- Aluminum
- Brass
- Cast iron

Important properties

- Modulus

Yield stress
Fatigue life

- Is density important?

Material treatment - Hardening

- What does hardening do the material properties
- It is expensive
- Affects final dimensions
- You can usually design without this

Principles of stiffness: Relationships

$$
\frac{q}{E I}=\frac{d^{4} y}{d x^{4}}
$$

$$
\frac{V}{E I}=\frac{d^{3} y}{d x^{3}}
$$

$$
\frac{M}{E I}=\frac{d^{2} y}{d x^{2}}
$$

$$
\theta=\frac{d y}{d x}
$$

Modeling: General forms of equations

Lateral bending deflection (middle)
F

$$
\delta=\frac{F L^{3}}{48 E I} \text { Const } \frac{F L^{3}}{E I}
$$

Axial deflection

$$
\delta=\frac{F L}{A E}
$$

Lateral bending angles (at ends)

$$
\delta=\frac{F L^{2}}{6 E I}=\frac{F L^{2}}{\text { Const EI }} \text { or } \frac{M L}{\text { Const E I }}
$$

Modeling: Stiffness

Lateral bending stiffness at middle

$$
k_{b}=48 \frac{(E I)}{L^{3}}=\text { Const }(E I) L^{n}
$$

Axial stiffness

$$
k_{A}=\frac{A E}{L}
$$

Torsional stiffness

$$
k_{\theta}=\frac{J G}{L}
$$

Stepped shafts?

Modeling: Stiffness

These pop up in many places, memorize them

- Square cross section

$$
I=\frac{1}{12} b h^{3}
$$

- Circular cross sections

$$
\begin{aligned}
& I=\frac{\pi}{64}\left[\left(d_{\text {outer }}\right)^{4}-\left(d_{\text {inner }}\right)^{4}\right] \\
& J=\frac{\pi}{32}\left[\left(d_{\text {outer }}\right)^{4}-\left(d_{\text {inner }}\right)^{4}\right]
\end{aligned}
$$

Principles of stiffness: Ratios

Everything deforms

- Impractical to model the stiffness of everything
- Mechanical devices modeled as high, medium \& low stiffness elements
- Stiffness ratios show what to model as high-, medium, or low stiffness

Stiffness ratio

$$
R_{k}=\frac{k_{1 s t}}{k_{2 n d}}
$$

$$
k_{\text {axial }}=\frac{A E}{l}\left|k_{\text {lateral }}=\frac{3 E I}{l^{3}}\right| R_{k}=\frac{\frac{A E}{l}}{\frac{3 E I}{l^{3}}}=4 \frac{l^{2}}{h^{2}}
$$

Building intuition for stiffness

- You can't memorize/calculate everything
- Engineers must be reasonable "instruments"
- Car suspension is easy, but flexed muscle vs. bone?

Principles of stiffness: Sensitivity

Cantilever

$$
\begin{aligned}
& \delta=\frac{F \cdot L^{3}}{3 \cdot E \cdot I} \\
& I=\frac{1}{12} \cdot b \cdot h^{3}
\end{aligned}
$$

$$
F=\left(\frac{E \cdot b}{4} \cdot\left[\frac{h}{L}\right]^{3}\right) \cdot \delta
$$

$$
k=\frac{d F}{d \delta}=\frac{d}{d \delta}\left\{\frac{E \cdot b}{4} \cdot\left[\frac{h}{L}\right]^{3} \cdot \delta\right\} \rightarrow \frac{E \cdot b}{4} \cdot\left[\frac{h}{L}\right]^{3}
$$

Superposition

You must be careful, following assumptions are needed

- Cause and effect are linearly related
\square No coupling between loads, they are independent
- Geometry of beam does not change too much during loading
- Orientation of loads does not change too much during loading

Use your head, when $M=0$, what is going on

Superposition is not plug and chug

- You must visualize
- You must think

Types of springs and behaviors

Springs and stiffness

- $\mathrm{k}_{\mathrm{F}}=\mathrm{dF}(\mathrm{x}) /_{\mathrm{dx}}$

Force-Displacement Curve \longrightarrow

F

Force-Displacement Curve $\rightarrow M N A-$

Non-linear force spring

- $k_{F}=$ function of x
- $\Delta \mathrm{E}_{\mathrm{b}-\mathrm{a}}=\int \mathrm{F}(\mathrm{x}) \cdot \mathrm{dx}$

Non-conformal contact - ball on flat

Non-conformal contacts often non-linear

- Example: bearings, belleville washers, structural connections

Linearization of non-linear springs

If you can linearize over the appropriate range... then you can use superposition

So how would, and when could, you do this?
$\square R=$ ball radius

- $E=$ modulus of both materials (both steel)
- $F=$ contact load

Practical application to the lathe problem

Case 11 in Appendix A-9

Practical application to the lathe problem

$$
\left.y(x)\right|_{A \rightarrow B}=\frac{1}{96 E I} \cdot F \cdot x^{2}(11 x-9 l)
$$

$$
y(l / 2)=\frac{1}{96 E I} \cdot F \cdot \frac{7}{8} l^{3}
$$

$$
\left.k\right|_{\text {Beam }}=\frac{768}{7} \cdot \frac{E I}{l^{3}}
$$

But, is this really what is going on?

Practical application to the lathe problem

Vs.

Practical application to the lathe problem

Practical application to the lathe problem

Or is it this?

If so, does it matter?

Practical application to the lathe problem

Group work

Obtain an equation for $\delta_{\text {total }}$ in terms of F, k and I

Estimate when k is important / should be considered?

What issue/scenario would cause k not to be infinite?

Look at these causes, if a stiffness is involved, would linearity, and therefore superposition apply?

