MIT OpenCourseWare http://ocw.mit.edu

2.72 Elements of Mechanical Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.72Elements of Mechanical Design Lecture 02: Review

Intent

High-level review of undergrad material as applied to engineering decision making

NOT an ME "redo" or a "how to" recitation

Import

Main goal of 2.72 is to teach you how to integrate past knowledge to engineer a system

Given this, how do I engineer a mechanical system? modular→simple→complex→system

2.001, 2.002 2.003, 2.004 2.005, 2.006 2.007, 2.008

Use of core ME principles that you know...

Impact

Understand why & how we will use parts of ME core knowledge

Problem set \rightarrow Engineering

Future help

We can't use lecture time to redo the early curriculum BUT

We are HAPPY to help outside of lecture IF you've tried

Schedule and reading assignment

Reading quiz

Changing from sponge to active mode

Lecture

Mechanics Dynamics Heat transfer Matrix math

Hands-on

Mechanics Dynamics Heat transfer Matrix math

Reading assignment

- □ Shigley/Mischke
 - Sections 4.1–4.5: 08ish pages & Sections 5.1–5.5: 11ish pages
 - Pay special attention to examples 4.1, 4.4, 5.3, and 5.4

Mechanics

Free body diagrams

Useful for:

- **Equilibrium**
- □ Stress, deflection, vibration, etc...

 $\Sigma \vec{F} = 0 = m\vec{a}$ $\Sigma M = 0 = I\vec{\alpha}$

Why do we ALWAYS use free body diagrams?

- □ Communication
- □ Thought process
- Documentation

How will we use free body diagrams?

- □ We are dealing with complex systems
- □ We will break problem into modules
- □ We will model, simulate and analyze mechanical behavior
- □ Integrate individual contributions to ascertain system behavior

Free body diagrams: Bearings/rails

Free body diagrams: Bearings/rails

Static: Head stock deformation

Educational Version. For Instructional Use Only

Model name: Lathe_structure_dynamics_example Study name: Static Plot type: Deformed shape Plot1 Deformation scale: 600

Static: Rail deformation

Educational Version. For Instructional Use Only

Model name: Lathe_structure_dynamics_example Study name: Static Plot type: Deformed shape Plot1 Deformation scale: 600

Example 1: *0* < *x* < *a*

Cantilever

□ Forces, moments, & torques

Why do we care?: Stress

- □ Shear & normal
- □ Static failure
- □ Fatigue failure

Why do we care?: Stiffness

- Displacement
- Rotation
- $\Box \text{ Vibration} \rightarrow ({^k/}_m)^{\frac{1}{2}}$

But, ends aren't all that matters

Example 1: *0* < *x* < *a*

But, ends aren't all that matters

Relating V(x) & M(x) $\Box V(x) = F$

$$\Box M(x) = F \cdot (x - a)$$
$$\Box V(x) = \frac{d}{dx} M(x)$$

Shear moment diagrams

- □ Solve statics equation
- □ Put point of import on plots
- □ Use V=dM/dx to generate M plot
- □ Master before spindle materials

Example 1: *0* < *x* < *a*

Group work: Generate strategy for this...

© Martin Culpepper, All rights reserved

Z

 $X \uparrow$

 Z_{\cdot}

Z

Vibration

Vibration principles

- □ Exchange potential-kinetic energy
- □ 2nd order system model

Blocks and squiggles...

- □ What do they really mean?
- □ Why are they important?
- □ How will we apply this?

Multi-degree-of-freedom system

- □ Mode shape
- Resonant frequency

Estimate ω_n (watch units) for:

□ A car suspension system

Images removed due to copyright restrictions. Please see:

http://www.hpiracing.com/graphics/kits/547/_MG_1962e.jpg http://www.societyofrobots.com/images/mechanics_suspension_honda.gif http://www.bose.com/images/learning/lc_susp_frontmodule.jpg

Vibration: MEMS device behavior

Vibrations: Meso-scale device behavior

Vibrations: Reducing amplitude...

© Martin Culpepper, All rights reserved

So... where find in reality... in lathe...

Vibration: Lathe structure – 1st mode

Model name: Lathe_structure_dynamics_example Study name: Study 1 Plot type: Frequency Plot1 Mode Shape : 1 Value = 401.72 Hz Deformation scale: 0.005

Vibration: Lathe structure – 2nd mode

Model name: Lathe_structure_dynamics_example Study name: Study 1 Plot type: Frequency Plot1 Mode Shape : 2 Value = 761.55 Hz Deformation scale: 0.005

Heat transfer

Thermal growth errors

For uniform temperature

$$\Delta L = \alpha L_o \Delta T$$

$$STEEL: 12L14 \rightarrow \Delta L = \frac{11.5 \times 10^{-6}}{m^{o}C} \frac{m}{L_{o}} \Delta T$$

ALUMINUM :6061 T6
$$\rightarrow \Delta L = 23.6 \times 10^{-6} \frac{m}{m^{o}C} L_{o} \Delta T$$

POLYMER : Delrin
$$\rightarrow \Delta L = 100 \times 10^{-6} \frac{m}{m^{o}C} L_{o} \Delta T$$

Convection and conduction

Convection:

$$\dot{q} = h A_{surface} \left(T - T_{\infty} \right)$$

Why do we care?

- □ Heat removal from cutting zone
- □ Heat generation in bearings
- □ Thermal growth errors

Conduction:

$$\dot{q} = k A_{cross} \frac{dT}{dx}$$

Why do we care?

- □ Heat removal from cutting zone
- □ Heat generation in bearings
- □ Thermal growth errors

Common k values to remember

🗆 Air	0.026 W /(mºC)
-------	----------------

□ 12L14 51.9 W /(m°C)

□ 6061 T6 167 W /(m°C)

Thermal resistance

Thermal resistance

$$\dot{q} = \frac{\Delta T}{R_T}$$

□ Convection

$$\dot{q} = \frac{\left(T - T_{\infty}\right)}{\left(h A_{surface}\right)^{-1}} \mapsto R_T = \frac{1}{h A_{surface}}$$

□ Conduction

$$\dot{q} = dT \frac{k A_{cross}}{dx} \mapsto R_T = \frac{dx}{k A_{cross}}$$

Biot (Bi) number

Ratio of convective to conductive heat transfer

Why do we care?

Types of errors

Machine system perspective

System-level approach Linking inputs and outputs Measurement quality

Errors....

Accuracy

The ability to tell the "truth"

Repeatability

Ability to do the same thing over & over

Both

 1st make repeatable, then make accurate
Calibrate

Determinism

- □ Machines obey physics!
- $\label{eq:Model} \square \ \mbox{Model} \to \mbox{understand relationships}$

$$[Outputs] = \begin{bmatrix} C_1 & C_2 & C_3 \\ C_4 & C_5 & C_6 \\ C_7 & C_8 & C_9 \end{bmatrix} [Inputs]$$

□ Understand sensitivity $[\Delta Outputs] = J [\Delta Inputs]$

Range

Furthest extents of motion

Resolution

□ Smallest, reliable position change

Categorizing error types

Systematic errors

Inherent to the system, repeatable and may be calibrated out.

Non-systematic errors

- Errors that are perceived and/or modeled to have a statistical nature
- □ Machines are not "random," there is no such thing as a random error

Consider the error for each set below

□ Link behavior with systematic and non-systematic errors.

Exercise

Exercise

Due Tuesday, start of class:

Lathe components

- □ Rough sketch(es) of lathe
- □ Annotate main components

1 page bullet point summary of where need to use:

Rules:

- □ You may not re-use examples from lecture!
- □ You are encouraged to ask any question!
- □ You may work in groups, but must submit your own work

Group work: Generate strategy for this...

© Martin Culpepper, All rights reserved

Z

 $X \uparrow$

 Z_{\cdot}

Z