MIT OpenCourseWare
|http://ocw.mit.edu

2.72 Elements of Mechanical Design

Spring 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

2.72

Elements of

Mechanical Design
Lecture 02: Review

Intent

High-level review of undergrad

 material as applied to engineering decision makingNOT an ME "redo" or a "how to" recitation

Import

Main goal of 2.72 is to teach you how to integrate past knowledge to engineer a system

Given this, how do I engineer a mechanical system? modular \rightarrow simple \rightarrow complex \rightarrow system

Use of core ME principles that you know...

(2.001, 2.002

2.003, 2.004

Impact

Understand why \& how we will use parts of ME core knowledge

Problem set \rightarrow Engineering

Future help

We can't use lecture time to redo the early curriculum BUT
We are HAPPY to help outside of lecture IF you've tried

Schedule and reading assignment

Reading quiz

Changing from sponge to active mode

Lecture
Mechanics
Dynamics
Heat transfer
Matrix math

Hands-on

Mechanics
Dynamics
Heat transfer
Matrix math

Reading assignment

- Shigley/Mischke
- Sections 4.1-4.5: 08ish pages \& Sections 5.1-5.5: 11ish pages
- Pay special attention to examples 4.1, 4.4, 5.3 , and 5.4

Mechanics

Free body diagrams

Useful for:

- Equilibrium
- Stress, deflection, vibration, etc...

$$
\begin{aligned}
& \Sigma \vec{F}=0=m \vec{a} \\
& \Sigma M=0=I \vec{\alpha}
\end{aligned}
$$

Why do we ALWAYS use free body diagrams?

- Communication
- Thought process
- Documentation

How will we use free body diagrams?

- We are dealing with complex systems
- We will break problem into modules
- We will model, simulate and analyze mechanical behavior
- Integrate individual contributions to ascertain system behavior

Free body diagrams: Bearings/rails

Free body diagrams: Bearings/rails

Static: Head stock deformation

Model name: Lathe_structure_dynamics_example
Study name: Static
Plot type: Deformed shape Plot1

Static: Rail deformation

Model name: Lathe_structure_dynamics_example Study name: Static
Plot type: Deformed shape Plot1

Example 1: $0<x<a$

Cantilever

- Forces, moments, \& torques

Why do we care?: Stress

- Shear \& normal
- Static failure
- Fatigue failure

Why do we care?: Stiffness

- Displacement
- Rotation
- Vibration $\rightarrow(\mathrm{k} / \mathrm{m})^{1 / 2}$

But, ends aren't all that matters

$+\mid \Sigma \bar{F}=0=-F+V(0) \rightarrow V(0)=V(x)=F$
$\Sigma \bar{M}=0=+F \cdot(a-x)+M(x) \rightarrow M(x)=-F \cdot(a-x)$

Example 1: $0<x<a$

But, ends aren't all that matters
Relating $\mathrm{V}(\mathrm{x})$ \& $\mathrm{M}(\mathrm{x})$

- $V(x)=F$
- $M(x)=F \cdot(x-a)$
- $V(x)=\frac{d}{d x} M(x)$

Shear moment diagrams

- Solve statics equation
- Put point of import on plots
- Use V=dM/dx to generate M plot
- Master before spindle materials

Example 1: $0<x<a$

Stress

$$
I(x)=\frac{1}{12} b(x)[h(x)]^{3}
$$

$$
\sigma(y)=M \frac{y}{I(x)} \rightarrow \sigma_{\max }=M \frac{c}{I(x)}
$$

$$
\begin{aligned}
& \left|\sigma_{\max }\right|=F \cdot(a-x) \frac{h(x)}{2} \frac{12}{b(x) \cdot[h(x)]^{3}} \\
& \left|\sigma_{\max }\right|=6 \frac{F \cdot(a-x)}{b(x) \cdot[h(x)]^{2}}
\end{aligned}
$$

© Martin Culpepper, All rights reserved

$+\{\Sigma \vec{F}=0=-F+V(0) \rightarrow V(0)=V(x)=F$
$(+\Sigma \bar{M}=0=+V(x) \cdot(a-x)-M(x) \rightarrow M(x)=-V(x) \cdot(a-x$

Group work: Generate strategy for this...

Dynamics

Vibration

Vibration principles

- Exchange potential-kinetic energy
- 2nd order system model

Blocks and squiggles...

- What do they really mean?
- Why are they important?
- How will we apply this?

Multi-degree-of-freedom system

- Mode shape
- Resonant frequency

Estimate ω_{n} (watch units) for:

- A car suspension system

Images removed due to copyright restrictions. Please see:
|http://www.hpiracing.com/graphics/kits/547/_MG_1962e.jpg
|http://www.societyofrobots.com/images/mechanics_suspension_honda.gif
http://www.bose.com/images/learning/lc_susp_frontmodule.jpg

Vibration: MEMS device behavior

Vibrations: Meso-scale device behavior

Golda, D. S., "Design of High-Speed, Meso-Scale Nanopositioners Driven by Electromagnetic Actuators," Ph.D. Thesis, Massachusetts Institute of Technology, 2008.
© Martin Culpepper, All rights reserved

Vibrations: Reducing amplitude...

How to change m, k, and c ?

So... where find in reality... in lathe...

Vibration: Lathe structure - $1^{\text {st }}$ mode

Vibration: Lathe structure - $2^{\text {nd }}$ mode

Model name: Lathe_structure_dynamics_example Study name: Study 1
Plot type: Frequency Plot1
Mode Shape : 2 Value $=\quad 761.55 \mathrm{~Hz}$
Deformation scale: 0.005

Heat transfer

Thermal growth errors

For uniform temperature

$$
\Delta L=\alpha L_{o} \Delta T
$$

STEEL: $12 L 14 \rightarrow \Delta L=11.5 \times 10^{-6} \frac{\mathrm{~m}}{\mathrm{~m}^{\circ} \mathrm{C}} L_{o} \Delta T$

$$
\text { ALUMINUM :6061 } T 6 \rightarrow \Delta L=23.6 \times 10^{-6} \frac{\mathrm{~m}}{\mathrm{~m}^{\circ} \mathrm{C}} L_{o} \Delta T
$$

$$
\text { POLYMER : Delrin } \rightarrow \Delta L=100 \times 10^{-6} \frac{\mathrm{~m}}{\mathrm{~m}^{\circ} \mathrm{C}} L_{o} \Delta T
$$

Convection and conduction

Convection:

$$
\dot{q}=h A_{\text {surface }}\left(T-T_{\infty}\right)
$$

Why do we care?

- Heat removal from cutting zone
- Heat generation in bearings
- Thermal growth errors

Conduction:

$$
\dot{q}=k A_{\text {cross }} \frac{d T}{d x}
$$

Why do we care?

- Heat removal from cutting zone
- Heat generation in bearings
- Thermal growth errors

Common \mathbf{k} values to remember

- Air
$0.026 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$
- $12 \mathrm{~L} 14 \quad 51.9 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$
- 6061 T6 $167 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$

Thermal resistance

Thermal resistance

$$
\dot{q}=\frac{\Delta T}{R_{T}}
$$

- Convection

$$
\dot{q}=\frac{\left(T-T_{\infty}\right)}{\left(h A_{\text {surface }}\right)^{-1}} \mapsto R_{T}=\frac{1}{h A_{\text {surface }}}
$$

- Conduction

$$
\dot{q}=d T \frac{k A_{\text {cross }}}{d x} \mapsto R_{T}=\frac{d x}{k A_{\text {cross }}}
$$

Biot (Bi) number

Ratio of convective to conductive heat transfer

$$
\frac{\dot{q}_{\text {convection }}}{\dot{q}_{\text {conduction }}} \mapsto \frac{\left.(h A \Delta T)\right|_{\text {convection }}}{\left.\left(k A \frac{\Delta T}{L}\right)\right|_{\text {conduction }}} \mapsto B i=\frac{h L_{c}}{k}
$$

Why do we care?

© Martin Culpepper, All rights reserved

Example of thermal errors

For:	
$\quad \square \mathrm{h}=$	$0.1 \mathrm{~W} /\left(\mathrm{m}^{20} \mathrm{C}\right)$
\square Bearing $T=$	$150{ }^{\circ} \mathrm{F}$
\square Chip $T=$	$180{ }^{\circ} \mathrm{F}$

For:

a $h=$	$50 \mathrm{~W} /\left(\mathrm{m}^{20} \mathrm{C}\right)$
a	Bearing $\mathrm{T}=$
- Chip $\mathrm{T}=$	$150{ }^{\circ} \mathrm{F}$
	$180{ }^{\circ} \mathrm{F}$

© Martin Culpepper, All rights reserved

Example of thermal errors

For:	
\quad a $\mathrm{h}=$	$0.1 \mathrm{~W} /\left(\mathrm{m}^{20} \mathrm{C}\right)$
\square Bearing $T=$	$150{ }^{\circ} \mathrm{F}$
\square Chip $\mathrm{T}=$	$180{ }^{\circ} \mathrm{F}$

For:

a $\mathrm{h}=$	$5000 \mathrm{~W} /\left(\mathrm{m}^{2 \circ} \mathrm{C}\right)$
- Bearing T $=$	$150{ }^{\circ} \mathrm{F}$
- Chip T $=$	$180^{\circ} \mathrm{F}$

Types of errors

Machine system perspective

System-level approach

 Linking inputs and outputs Measurement quality
© Martin Culpepper, All rights reserved

Errors....

Accuracy

- The ability to tell the "truth"

Repeatability

- Ability to do the same thing over \& over

Both

- $1^{\text {st }}$ make repeatable then make accurate - Calibrate

Determinism

- Machines obey physics!
- Model \rightarrow understand relationships

$$
\left.[\text { Outputs }]=\left[\begin{array}{lll}
C_{1} & C_{2} & C_{3} \\
C_{4} & C_{5} & C_{6} \\
C_{7} & C_{8} & C_{9}
\end{array}\right] \text { [Inputs }\right]
$$

- Understand sensitivity

$$
[\Delta \text { Outputs }]=J[\Delta \text { Inputs }]
$$

Range

- Furthest extents of motion

Resolution

- Smallest, reliable position change

Categorizing error types

Systematic errors

- Inherent to the system, repeatable and may be calibrated out.

Non-systematic errors

- Errors that are perceived and/or modeled to have a statistical nature
- Machines are not "random," there is no such thing as a random error

Consider the error for each set below

- Link behavior with systematic and non-systematic errors.

Exercise

Exercise

Due Tuesday, start of class:

Lathe components

- Rough sketch(es) of lathe
- Annotate main components

1 page bullet point summary of where need to use:

- 2.001, 2.002 2.003, 2.004 2.005, 2.006 2.007, 2.008

Rules:

- You may not re-use examples from lecture!
- You are encouraged to ask any question!
- You may work in groups, but must submit your own work

Group work: Generate strategy for this...

