2. ($\mathbf{1 5 \%}$) The index of refraction in a GRadient INdex (GRIN) medium is given by

$$
n(r)=\left\{\begin{aligned}
\sqrt{2-r^{2}}, & \text { if } 0<r<1 \\
1, & r \geq 1
\end{aligned}\right.
$$

where $r=\sqrt{x^{2}+z^{2}}$ is the cylindrical polar coordinate.
2.a) Write down the set of Hamiltonian ray-tracing differential equations for the ray trajectories $\mathrm{d} x / \mathrm{d} s, \mathrm{~d} z / \mathrm{d} s$ and moments $\mathrm{d} p_{x} / \mathrm{d} s, \mathrm{~d} p_{z} / \mathrm{d} s$, where s is the indexing variable along the rays. Do not attempt to solve the 4×4 set of Hamiltonian equations.
2.b) Prove that, within the disk $r<1$,

$$
\left(\frac{\mathrm{d} p_{x}}{\mathrm{~d} s}\right)^{2}+\left(\frac{\mathrm{d} p_{z}}{\mathrm{~d} s}\right)^{2}=\frac{2}{p_{x}^{2}+p_{z}^{2}}-1
$$

2.c) Is the Screen Hamiltonian preserved in this system?

PLEASE TURN OVER

Problem 2:
Given the following GRIN medium,

$$
n(r)=\left\{\begin{array}{cc}
\sqrt{2-r^{2}} & 0<r<1 \\
1 & r \geqslant 1
\end{array}\right.
$$

a) The Hamiltonian equations are, $(r<1)$

$$
\begin{align*}
& \frac{d x}{d S}=\frac{\partial H}{\partial P_{x}}=-\frac{1}{2} \frac{2 P_{x}}{\sqrt{P_{x}^{2}+P_{z}^{2}}}=-\frac{P_{x}}{n} \\
& \frac{d z}{d S}=\frac{\partial H}{\partial P_{z}}=-\frac{1}{2} \frac{2 P_{z}}{\sqrt{P_{x}^{2}+P_{z}^{2}}}=-\frac{P_{z}}{n} \\
& \frac{d P_{x}}{d S}=-\frac{\partial H}{\partial x}=-\frac{1}{2} \frac{-2 x}{n}=\frac{x}{n} \\
& \frac{d P_{z}}{d S}=-\frac{\partial H}{\partial z}=-\frac{1}{2} \frac{-2 z}{n}=\frac{P_{x}}{n}
\end{align*} \Rightarrow\left\{\begin{array}{l}
\frac{d x}{d S}=-\frac{P_{x}}{n}=-\frac{P_{x}}{\sqrt{2-x^{2}-z^{2}}} \\
\frac{d z}{d S}=-\frac{P_{z}}{n}=-\frac{P_{z}}{\sqrt{2-x^{2}-z^{2}}} \\
\frac{d P_{x}}{d S}=\frac{x}{n}=\frac{x}{\sqrt{2-x^{2}-z^{2}}} \\
\frac{d P_{z}}{d S}=\frac{z}{n}=\frac{z}{\sqrt{2-x^{2}-z^{2}}}
\end{array}\right.
$$

where,

$$
\begin{aligned}
& \text { ere, } \\
& H=n(q)-\left[p_{x}^{2}+p_{z}^{2}\right]^{1 / 2}=0
\end{aligned}
$$

$$
\begin{aligned}
& =n(q)-\left[p_{x}^{2}+p_{z} 1\right. \\
& =\left[2-x^{2}-z^{2}\right]^{1 / 2}-\left[p_{x}^{2}+p_{z}^{2}\right]^{1 / 2}=0 \\
& n=\sqrt{p_{x}^{2}+}
\end{aligned}
$$

$$
n=\sqrt{p_{x}^{2}+p_{z}^{2}}
$$

b)

$$
\begin{aligned}
& \left(\frac{d P_{x}}{d s}\right)^{2}+\left(\frac{d P_{z}}{d s}\right)^{2}=\left(\frac{x}{n}\right)^{2}+\left(\frac{z}{n}\right)^{2}=\frac{x^{2}+z^{2}}{n^{2}}=\frac{x^{2}+z^{2}}{P_{x}^{2}+P_{z}^{2}} \\
& =\frac{r^{2}}{P_{x}^{2}+P_{z}^{2}}=\frac{2-n^{2}}{P_{x}^{2}+P_{z}^{2}}=\frac{2}{P_{x}^{2}+P_{z}^{2}}-1 . \quad n^{2}=P_{x}^{2}+P_{z}^{2}
\end{aligned}
$$

c) Since $\frac{\partial n}{\partial z} \neq 0$, the Screen Hamiltonian is not conserved. This may be verified by direct substitution

$$
h=-\sqrt{n^{2}-p x^{2}}=-\sqrt{2-x^{2}-z^{2}-p x^{2}}
$$

and we see that,

$$
\frac{\partial h}{\partial z}=\frac{z}{\sqrt{2-x^{2}-z^{2}-9 x^{2}}} \neq 0
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

