Demo #3: 4F Spatial Filtering

2.71/2.710 - Optics Mechanical Engineering MIT

Matt Klug

Demo #3: 4F Spatial Filtering Setup

2

|||;;

Object is a Wire Mesh

Demo #3: 4F Spatial Filtering Scheme

Demo #3: Field Through Objective Lens

Input Field:
$$g_{in}(x, y) = \left[\operatorname{rect} \left(\frac{x}{\Lambda - d} \right) \operatorname{rect} \left(\frac{y}{\Lambda - d} \right) \right] \otimes \left[\operatorname{comb} \left(\frac{x}{\Lambda} \right) \operatorname{comb} \left(\frac{y}{\Lambda} \right) \right]$$

Field Before Pupil Plane: $g_{pp-} \propto \operatorname{sinc} \left((\Lambda - d)u \right) \operatorname{sinc} \left((\Lambda - d)v \right) \operatorname{comb} (\Lambda u) \operatorname{comb} (\Lambda v)$
 $g_{pp-} \propto \operatorname{sinc} \left((\Lambda - d) \frac{x''}{\lambda f_1} \right) \operatorname{sinc} \left((\Lambda - d) \frac{y''}{\lambda f_1} \right) \operatorname{comb} \left(\Lambda \frac{x''}{\lambda f_1} \right) \operatorname{comb} \left(\Lambda \frac{y''}{\lambda f_1} \right)$

4

Comb functions in the x and y-directions. Sinc functions superimposed in x and y directions produce a cross pattern.

Demo #3: 4F Spatial Filtering and Output Field

Field After Pupil Plane: $g_{pp+} \propto \operatorname{rect}\left(\frac{v}{a}\right) comb(\Lambda v) = \operatorname{rect}\left(\frac{y''}{a\lambda f_1}\right) comb\left(\Lambda \frac{y''}{\lambda f_1}\right)$ **Field at Output Plane:** $g_{out} \propto \operatorname{sinc}(a\lambda f_1 v) \operatorname{comb}(\Lambda \lambda f_1 v) = \operatorname{sinc}\left(a\frac{f_1}{f_2}y'\right) \operatorname{comb}\left(\frac{1}{\Lambda}\frac{f_1}{f_2}y'\right)$

g _{out} (x',y')		

Since *a* is small, sinc pattern has a large central lobe

Recover near original comb period that has been magnified by f_2/f_1 MIT OpenCourseWare http://ocw.mit.edu

2.71 / 2.710 Optics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.