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Outline: 

A. Electromagnetism 

B. Frequency Domain (Fourier transform) 

C. EM waves in Cartesian coordinates 

D. Energy Flow and Poynting Vector 

E. Connection to geometrical optics 

F. Eikonal Equations: Path of Light in an Inhomogeneous Medium 

 

 

 

A. Electromagnetism and Maxwell Equations, Differential Forms: 

 

- In real space, time-dependent fields: 

 

(Coulomb’s Law, electric field)    (1) 

 

   (2) 

(Gauss’ Law, magnetic field)  
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  (3) 

(Faraday’s Law)  

 

   (4) 

(Ampere-Maxwell’s Law)  

 

Note: J, q are sources of EM radiation and E, D, H, B are induced fields. 

 

B. From time domain to frequency domain (Fourier Transform): 

 

Continuous wave laser light field understudy are often mono-chromatic. These 

problems are mapped in the Maxwell equations by expanding complex time 

signals to a series of time harmonic components (often referred to as “single” 

wavelength light):  

e.g.    �⃗� (𝑟 , 𝑡)  ∫ �⃗⃗� (𝑟 , 𝜔)𝑒𝑥𝑝(−𝑖𝜔𝑡)𝑑𝜔
∞

−∞
   (5) 

Advantage: 

 

 
𝜕

𝜕𝑡
�⃗� (𝑟 , 𝑡)  ∫ �⃗⃗� (𝑟 , 𝜔)

𝜕

𝜕𝑡
𝑒𝑥𝑝(−𝑖𝜔𝑡)𝑑𝜔  

∞

−∞
∫ [−𝒊𝝎�⃗⃗� (�⃗� , 𝝎)]𝑒𝑥𝑝(−𝑖𝜔𝑡)𝑑𝜔
∞

−∞
 (6) 

 

B(t) up or downdl
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So, we can replace all time derivatives  
𝜕

𝜕𝑡
 by −𝑖𝜔 in frequency domain: 

(Faraday’s Law:)     (7) 

(Ampere-Maxwell’s Law:)   (8) 

 

The other two equations remain unaltered. 

 

  

There are total of 12 unknowns (E, H, D, B) but so far we only obtained 8 equations 

from the Maxwell equations (2 vector form x3 + 2 scalar forms) so more information 

needed to understand the complete wave behavior! 

 

Generally we may start to construct the response of a material by applying a 

excitation field E or H in vacuum. Therefore it is more typical to consider the E, H 

field as input and D, B fields as output. In common optical materials, we may enjoy 

the following simplification of local (i.e. independent of neighbors) and linear 

relationship: 

�⃗⃗� (𝜔)  𝜀(𝜔)𝜀0�⃗⃗� (𝜔)     (9) 

�⃗⃗� (𝜔)  𝜇(𝜔)𝜇0�⃗⃗⃗� (𝜔)    (10) 

 

The so called (electric) permittivity 𝜀(𝜔) and (magnetic) permeability 𝜇(𝜔)are 

unitless parameters that depend on the frequency of the input field. In the case of 

anisotropic medium, both 𝜀(𝜔) and 𝜇(𝜔)become 3x3 dimension tensor. 

 

Now we have 6 more equations from material response, we can include them 

together with Maxwell equations to obtain a complete solution of optical fields with 

proper boundary condition.  

 

 

C. Maxwell’s Equations in Cartesian Coordinates: 

 

To solve Maxwell equations in Cartesian coordinates, we need to practice on the 

vector operators accordingly. Most unfamiliar one is probably the curl of a vector 𝐴 . 

In Cartesian coordinates it is often written as a matrix determinant: 
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𝛁  �⃗⃗�  |

�̂� �̂� �̂�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐴𝒙 𝐴𝒚 𝐴𝒛

|    (11) 

 

In this fashion, we may write the Faraday’s law in frequency domain, 

, with 3 components in Cartesian coordinates: 

(
𝜕𝐸𝑧

𝜕𝑦
−
𝜕𝐸𝑦

𝜕𝑧
)  𝑖𝜔 𝑥     (12) 

(
𝜕𝐸𝑧

𝜕𝑥
−
𝜕𝐸𝑥

𝜕𝑧
)  𝑖𝜔 𝑦      (13) 

(
𝜕𝐸𝑦

𝜕𝑥
−
𝜕𝐸𝑥

𝜕𝑦
)  𝑖𝜔 𝑧     (14) 

 

Likewise, we arrive at the rest of Maxwell’s equations: 

(
𝜕𝐻𝑧

𝜕𝑦
−
𝜕𝐻𝑦

𝜕𝑧
)  −𝑖𝜔 𝑥     (15) 

(
𝜕𝐻𝑧

𝜕𝑥
−
𝜕𝐻𝑥

𝜕𝑧
)  −𝑖𝜔 𝑦     (16) 

(
𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥

𝜕𝑦
)  −𝑖𝜔 𝑧      (17) 

together with 
𝜕

𝜕𝑥
 𝑥  

𝜕

𝜕𝑦
 𝑦  

𝜕

𝜕𝑧
 𝑧         (18) 

And 

  
𝜕

𝜕𝑥
 𝑥  

𝜕

𝜕𝑦
 𝑦  

𝜕

𝜕𝑧
 𝑧         (19) 

 

- Example: Plane EM wave in 1-D homogeneous medium (e.g. an expanded 

laser beam in +z direction,  
𝝏

𝝏𝒙
 𝟎, 

𝝏

𝝏𝒚
 𝟎) 

We can now further simplify from the above equations in Cartesian coordinates: 

(
𝜕𝐸𝑧

𝜕𝑦
−
𝜕𝐸𝑦

𝜕𝑧
)  𝑖𝜔 𝑥       (20) 

(
𝜕𝐸𝑧

𝜕𝑥
−
𝜕𝐸𝑥

𝜕𝑧
)  𝑖𝜔 𝑦     (21) 

And 

(
𝜕𝐻𝑧

𝜕𝑦
−
𝜕𝐻𝑦

𝜕𝑧
)  −𝑖𝜔 𝑥    (22) 

(
𝜕𝐻𝑧

𝜕𝑥
−
𝜕𝐻𝑥

𝜕𝑧
)  −𝑖𝜔 𝑦    (23) 

 

From the above we found only 4 non-trivial equations. In the isotropic case, they can 

be further divided into 2 independent sub-groups (two Polarizations!):  
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(Ex, Hy only) 

𝑖𝜔𝜇𝜇0 𝑦  −
𝜕

𝜕𝑧
𝐸𝑥     (24) 

    and  𝑖𝜔𝜀𝜀0𝐸𝑧  
𝜕

𝜕𝑧
 𝑦    (25) 

 

Or 

(Ey, Hx only) 

𝑖𝜔𝜇𝜇0 𝑥  −
𝜕

𝜕𝑧
𝐸𝑦     (26) 

        And  𝑖𝜔𝜀𝜀0𝐸𝑦  
𝜕

𝜕𝑧
 𝑥    (27) 

 

 

Observations: 

- We see that wave propagation in such medium is purely transverse, i.e. only 

components of E, H field that are orthogonal to propagation direction (+z) 

survived in the wave field. 

- Taking the derivative 
𝝏

𝝏𝒛
  again on any of these equations, we obtain wave 

equation such as:  
𝜕2

𝜕𝑧2
𝐸𝑥  −𝑖𝜔𝜇𝜇0

𝜕

𝜕𝑧
 𝑦  −𝑖𝜔𝜇𝜇0(𝑖𝜔𝜀𝜀0)𝐸𝑥   (28) 

𝜕2

𝜕𝑧2
𝐸𝑥  (𝜔

2𝜇0𝜀0)𝜀𝜇𝐸𝑥  (
𝜀𝜇𝜔2

𝑐0
2 )𝐸𝑥  (29) 

 

since the speed of light c0 in vacuum satisfy ( c0
2  

1

𝜀0𝜇0
) 

Therefore the index of refraction is found as:  

𝑛(𝜔)  √𝜀(𝜔)𝜇(𝜔)   (30) 

 

 

D. The Poynting Vector 

The Poynting vector, �⃗⃗�  𝜀0𝑐0
2�⃗�   ⃗ , is used to power per unit area in the direction of 

propagation. 
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o Justification:  

 

Energy passing through area A in time t: 

 

 

So the energy per unit time per unit area: 

 

 

 

 

 

 

- The Irradiance (often called the Intensity) 

Visible light wave oscillates in 1014-1015Hz. Since we don’t have a detector that 

responds in such a high speed yet, for convenience we take the average power per 

unit area, as the irradiance. 

  

Substituting a sinusoidal light wave into the expression for the Poynting vector 

yields                                           

〈�⃗⃗� 〉  𝜀0𝑐0
2〈�⃗�   ⃗ 〉  

1

2
𝜀0𝑐0

2𝐸0 0     (31) 

 

 

E. High Frequency Limit, connection to Geometric Optics: 

 

How can we obtain Geometric optics picture 

such as ray tracing from wave equations?  Now 

let’s go back to real space and frequency 

domain (in an isotropic medium but with 

spatially varying permittivity 𝜀(𝑥, 𝑧), for 

example). 

𝜕2

𝜕𝑥2
𝐸𝑥  

𝜕2

𝜕𝑧2
𝐸𝑥  𝜀(𝑥, 𝑧) (

𝜔2

𝑐0
2)𝐸𝑥    (32) 

Now we decompose the field E(r, ) into two 

forms: a fast oscillating component exp(ik0), 

k0  𝜔/𝑐0 and a slowly varying envelope E0(r) 

as illustrated in the textbox. 

 

A

c t

U = Energy density
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With this tentative solution, we can rewrite the wave equation: 

𝜕

𝜕𝑥
𝐸𝑥  (

𝜕

𝜕𝑥
𝐸0(𝑥, 𝑧)) exp(𝑖𝑘Φ(𝑥, 𝑧))  𝐸0(𝑥, 𝑧) [

𝜕

𝜕𝑥
exp(𝑖𝑘Φ(𝑥, 𝑧))]   (33) 

𝜕

𝜕𝑥
𝐸𝑥  (

𝜕

𝜕𝑥
𝐸0(𝑥, 𝑧)) exp(𝑖𝑘Φ(𝑥, 𝑧))  𝐸0(𝑥, 𝑧) [𝑖𝑘

𝜕Φ(𝑥,𝑧)

𝜕𝑥
] exp(𝑖𝑘Φ(𝑥, 𝑧)) (34) 

𝜕

𝜕𝑥
𝐸𝑥  [

𝜕

𝜕𝑥
𝐸0(𝑥, 𝑧)  𝑖𝑘𝐸0(𝑥, 𝑧)

𝜕Φ(𝑥,𝑧)

𝜕𝑥
] exp(𝑖𝑘Φ(𝑥, 𝑧))    (35) 

𝜕2

𝜕𝑥2
𝐸𝑥  [

𝜕2

𝜕𝑥2
𝐸0(𝑥, 𝑧)  𝑖𝑘𝐸0(𝑥, 𝑧)

𝜕2

𝜕𝑥2
Φ(𝑥, 𝑧)  2𝑖𝑘

𝜕

𝜕𝑥
𝐸0(𝑥, 𝑧)

𝜕

𝜕𝑥
Φ(𝑥, 𝑧) −

𝑘2𝐸0(𝑥, 𝑧) (
𝜕

𝜕𝑥
Φ(𝑥, 𝑧))

2

] exp(𝑖𝑘Φ(𝑥, 𝑧))     (36) 

Similarly you can find the derivative along the z direction. So our wave equation becomes: 

𝑘2 [𝜀(𝑥, 𝑧) − (
𝜕

𝜕𝑥
Φ(𝑥, 𝑧))

2

− (
𝜕

𝜕𝑧
Φ(𝑥, 𝑧))

2

] 𝐸0(𝑥, 𝑧)  

 [
𝜕2

𝜕𝑥2
𝐸0(𝑥, 𝑧)  

𝜕2

𝜕𝑧2
𝐸0(𝑥, 𝑧)]  2𝑖𝑘 [

𝜕

𝜕𝑥
𝐸0(𝑥, 𝑧)

𝜕

𝜕𝑥
Φ(𝑥, 𝑧)  

𝜕

𝜕𝑧
𝐸0(𝑥, 𝑧)

𝜕

𝜕𝑧
Φ(𝑥, 𝑧)]  

𝑖𝑘𝐸0(𝑥, 𝑧) [
𝜕2

𝜕𝑥2
Φ(𝑥, 𝑧)  

𝜕2

𝜕𝑧2
Φ(𝑥, 𝑧)]          (37) 

 

Furthermore, if the envelope of field varies slowly with 

wavelength (e.g.  
1

𝑘

𝜕

𝜕𝑥
𝐸0 ≪ 1, 

1

𝑘

𝜕

𝜕𝑧
𝐸0 ≪ 1) then only 

the first term is important. 

(
𝜕Φ

𝜕𝑥
)
2
 (

𝜕Φ

𝜕𝑧
)
2
 𝜀(𝑥, 𝑧)  𝑛2(𝑥, 𝑧)   (38) 

This is the well-known Eikonal equation, Φ being the 

eikonal (derived from a Greek word, meaning image). 

 

 

 

 

 

 

 

 

Geometrical relationship 

of E, H, and ∇Φ 

1

2

3

∇Φ
E0

H0
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F. Path of Light in an Inhomogeneous Medium 

 

A. Example 1: 1D problems (Gradient index waveguides, Mirage Effects) 

 
The best known example of this kind is probably the Mirage effect in desert or 

near a seashore, and we heard of the explanation such as the refractive index 

increases with density (and hence decreases with temperature at a given altitude).  

With the picture in mind, now can we predict more accurately the ray path and 

image forming processes? 

 
 

Starting from the Eikonal equation and we assume 𝑛2(𝑥, 𝑧) is only a function of x, 
then we find: 

 

(
𝜕Φ

𝜕𝑥
)
2
 (

𝜕Φ

𝜕𝑧
)
2
 𝑛2(𝑥)    (39) 

 

Since there is the index in independent of z, we may assume the slope of phase 
change in z direction is linear: 

 

(
𝜕Φ

𝜕𝑧
)= C(const)      (40) 

 
         This allows us to find  

𝜕Φ

𝜕𝑥
 √𝑛2(𝑥) − 𝐶2     (41) 

 
 

From Fermat’s principle, we can visualize that direction of rays follow the gradient of 
phase front: 

 

𝑛
𝑑𝑟 

𝑑𝑙
 ∇Φ       (42) 

 

tchris
Typewritten Text

tchris
Typewritten Text
Image of Mirage effect removed due to copyright restrictions.

tchris
Typewritten Text
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z-direction:    𝑛(𝑥)
𝑑𝑧

𝑑𝑙
 C         (43) 

 

x-direction:   𝑛(𝑥)
𝑑𝑥

𝑑𝑙
 √𝑛2(𝑥)−𝐶2      (44) 

 
Therefore, the light path (x, z) is determined by: 

𝑑𝑧

𝑑𝑥
 

C

√𝑛2(𝑥)−𝐶2
       (45) 

 
Hence 

𝑧 − 𝑧0  ∫
C

√𝑛2(𝑥)−𝐶2
𝑑𝑥

𝑥

𝑥0
     (46) 

 
Without loss of generality, we may assume a quadratic index profile along the x 

direction, such as found in gradient index optical fibers or rods: 
 

𝑛2(𝑥)  𝑛0
2(1 − 𝛼𝑥2)    (47) 

 

𝑧 − 𝑧0  ∫
C

√𝑛 
2(1−𝛼𝑥2)−𝐶2

𝑑𝑥
𝑥

𝑥0
      (48) 

 
To find the integral explicitly we may take the following transformation of the 
variable x: 
 

𝑥  √
𝑛0
2−𝐶2

𝑛0
2𝛼
𝑠𝑖𝑛𝜃        (49) 

Therefore,  
 

𝑧 − 𝑧0  ∫
C

𝑛0√𝛼
𝑑𝜃

𝜃

𝜃0
      (50) 

 

𝑧  𝑧0  
C

𝑛0√𝛼
(𝜃 − 𝜃0)    (51) 

 
Or more commonly,  

𝑥√
𝑛0
2𝛼

𝑛0
2−𝐶2

 𝑠𝑖𝑛𝜃  𝑠𝑖𝑛 (𝜃0  √
𝑛0
2𝛼

𝐶2
(𝑧 − 𝑧0))    (52) 

 
As you can see in this example, ray propagation in the gradient index waveguide follows a 

sinusoid pattern! The periodicity is determined by a constant 
2𝜋𝐶

𝑛0√𝛼
. 
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Observation: the constant C is related to the original “launching” angle of the 

optical ray. To check that we start by: 
 

 
 

𝑑𝑧

𝑑𝑥
|
𝑥=𝑥0

 
C

√𝑛2(𝑥0)−𝐶
2
       (53) 

If we assume C=𝑛(𝑥0)𝑐𝑜𝑠𝛽, then  
𝑑𝑧

𝑑𝑥
|
𝑥=𝑥0

 
cosβ

𝑠𝑖𝑛𝛽
 𝑐𝑜𝑡𝛽      (54) 

 
B. Other popular examples: Luneberg Lens 

The Luneberg lens is inhomogeneous sphere that brings a collimated beam of light to a 
focal point at the rear surface of the sphere. For a sphere of radius R with the origin at 
the center, the gradient index function can be written as:  
 

𝑛(𝑟)  {𝑛0
√2 −

𝑟2

𝑅2
, 𝑟 ≤ 𝑅

𝑛0 𝑟 > 𝑅
    (55) 

Such lens was mathemateically conceived during the 2nd world war by R. K. Luneberg, 
(see: R. K. Luneberg, Mathematical Theory of Optics (Brown University, Providence, 
Rhode Island, 1944), pp. 189-213.) The applications of such Luneberg lens was quickly 
demonstrated in microwave frequencies, and later for optical communications as well 
as in acoustics. Recently, such device gained new interests in in phased array 
communications, in illumination systems, as well as concentrators in solar energy 
harvesting and in imaging objectives. 
 

x

z

Index of 
refraction
n(x) 

dz
dx
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Left: Picture of an Optical Luneberg Lens (a glass ball 60 mm in diameter) used as 
spherical retro-reflector on Meteor-3M spacecraft. (Nasa.gov)  
Right: Ray Schematics of Luneberg Lens with a radially varying index of refraction. All 
parallel rays (red solid curves) coming from the left-hand side of the Luneberg lens will 
focus to a point on the edge of the sphere. 
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