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Outline: 

A. Imaging with coherent light 

B. Optical Spatial Filtering 

C. The significance of PSF and ATF, and effect of coherence 

D. Phase Contrast Imaging: Zernike and Schlieren methods 

 

A. Imaging with Coherent Light 
Recap: a convex lens conduct Fourier Transform at the two focal planes: 
 

or   
 
 
The two pictures above are interpretations of the same physical phenomenon. 
On the left, the transparency is interpreted as a superposition of “spherical 
wavelets.”  
Each spherical wavelet is collimated by the lens and contributes to a plane wave at 
the output, propagating at the appropriate angle (scaled by f.) 
 
On the right, the transparency is interpreted in the Fourier sense as a superposition 
of plane waves (“spatial frequencies.”) Each plane wave is transformed to a 
converging spherical wave by the lens and contributes to the output, at distance f to 
the right of the lens, a point image that carries all the energy that departed from the 
input at the corresponding spatial frequency. 
 
From the front focal plane to the back focal plane: 
 

𝐸𝑜𝑢𝑡(𝑥′, 𝑦′) ≈ ∬ 𝐸𝑖𝑛(𝑥, 𝑦)exp {
−𝑖𝑘[𝑥′𝑥+𝑦′𝑦]

𝑓
} 𝑑𝑥𝑑𝑦   (1) 

 

We see that: 𝑘𝑥 = 𝑥′
𝑘

𝑓
, 𝑘𝑦 = 𝑦′

𝑘

𝑓
 or  

 

𝑥′ = 𝑘𝑥
𝑓

𝑘
, 𝑦′ = 𝑘𝑦

𝑓

𝑘
     (2) 
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By cascading two lenses together, we can reveal Abbe’s theory of imaging process: 
 

 
 

 
 

Ideally, applying two forward Fourier transforms recovers the original function of 
the object field, with a reversal in the coordinates: 

𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ≈ ∬ 𝐸(𝑥′, 𝑦′)exp {
−𝑖𝑘[𝑥′𝑥"+𝑦′𝑦"]

𝑓2
} 𝑑𝑥′𝑑𝑦′   (3) 

 

Using 𝑥′ = 𝑘𝑥
𝑓1

𝑘
, 𝑦′ = 𝑘𝑦

𝑓1

𝑘
   

 

𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ≈ (
𝑓1

𝑘
)
2

∬ 𝐸(𝑥′, 𝑦′)exp {−𝑖
𝑓1

𝑓2
[𝑘𝑥𝑥" + 𝑘𝑦𝑦"]} 𝑑𝑘𝑥𝑑𝑘𝑦

 (4) 
 

Let −
𝑓1

𝑓2
𝑥" = 𝑥, −

𝑓1

𝑓2
𝑦" = 𝑦,     (5) 

 

𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ∝ ℱ (ℱ (𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦))) = 𝐸𝑜𝑏𝑗𝑒𝑐𝑡 (−
𝑓2

𝑓1
𝑥, −

𝑓2

𝑓1
𝑦)     (6) 

Potentially, the magnification ratio 𝑀 = 𝑓2/𝑓1can be arbitrarily large. This however 
does not mean that the microscope is able to resolve arbitrarily small objects. The 
finite size of the aperture stop, and the corresponding transmission 𝐴𝑆(𝑥′, 𝑦′) will 
contribute to the above Fourier transforms: 

𝐴𝑆(𝑥′, 𝑦′) = 𝐴𝑆(𝑘𝑥
𝑓1

𝑘
, 𝑘𝑦

𝑓1

𝑘
)     (7) 

plane

wave
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𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ≈ ℱ (𝐴𝑆(𝑘𝑥
𝑓1
𝑘
, 𝑘𝑦

𝑓1
𝑘
) × ℱ (𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦))) 

 
 

𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ≈ 𝐸𝑜𝑏𝑗𝑒𝑐𝑡 (−
𝑓2

𝑓1
𝑥, −

𝑓2

𝑓1
𝑦)⨂ℱ [𝐴𝑆 (𝑘𝑥

𝑓1

𝑘
, 𝑘𝑦

𝑓1

𝑘
)]  (8) 

 

Note: In Goodman’s book, the term𝐴𝑆(𝑘𝑥
𝑓1

𝑘
, 𝑘𝑦

𝑓1

𝑘
)   is called Amplitude Transfer 

Function(ATF), and its Fourier transform, ℱ [𝐴𝑆(𝑘𝑥
𝑓1

𝑘
, 𝑘𝑦

𝑓1

𝑘
)] is called Point Spread 

Function(PSF) (since it is the spread of an ideal point source 𝛿(𝑥, 𝑦) at the image). 
 
 
Worked Examples:  
 
1) Rectangle apertures:  

𝐴𝑇𝐹 = 𝑟𝑒𝑐𝑡 (
𝑓1𝑘𝑥

𝑎𝑘
) 𝑟𝑒𝑐𝑡(

𝑓1𝑘𝑦

𝑏𝑘
)   (9) 

 

𝑃𝑆𝐹(𝑥", 𝑦") ≈ (
𝑓
1

𝑘
)

2

∬ 𝑟𝑒𝑐𝑡(
𝑓
1

𝑎𝑘
𝑘𝑥) 𝑟𝑒𝑐𝑡(

𝑓
1

𝑏𝑘
𝑘𝑦)exp {−𝑖

𝑓1
𝑓2
[𝑘𝑥𝑥" + 𝑘𝑦𝑦"]} 𝑑𝑘𝑥𝑑𝑘𝑦 

𝑃𝑆𝐹(𝑥", 𝑦") ≈ [𝑎𝑠𝑖𝑛𝑐 (
𝑎𝑘

𝑓
1

𝑥)] [𝑏𝑠𝑖𝑛𝑐(
𝑏𝑘

𝑓
1

𝑦)] 

=[𝑎𝑠𝑖𝑛𝑐 (−
𝑎𝑘

𝑓2
𝑥")] [𝑏𝑠𝑖𝑛𝑐 (−

𝑏𝑘

𝑓2
𝑦")]     (10) 

 

 
 
 
 
 
 
 
 
 

a/λf1

b/λf1

ATF PSF
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2) Circular apertures: 

𝐴𝑇𝐹 = 𝑐𝑖𝑟𝑐 (
𝑓1

𝑅𝑘
√𝑘𝑥

2 + 𝑘𝑦
2)  (11) 

 

𝑃𝑆𝐹(𝑥", 𝑦") ≈ (
𝑓
1

𝑘
)

2

∬ 𝑐𝑖𝑟𝑐(
𝑓
1

𝑅𝑘
√𝑘𝑥

2 + 𝑘𝑦
2
) exp {−𝑖

𝑓1
𝑓2
[𝑘𝑥𝑥" + 𝑘𝑦𝑦"]} 𝑑𝑘𝑥𝑑𝑘𝑦 

 

𝑃𝑆𝐹(𝑥", 𝑦") ≈ 𝑎2𝐽𝑖𝑛𝑐 (
𝑅𝑘

𝑓1
√𝑥2 + 𝑦2)=𝑎2𝐽𝑖𝑛𝑐 (

𝑅𝑘

𝑓2
√𝑥"

2
+𝑦"

2
) (12) 

 

 
 
 

B. Optical Spatial Filtering  
 
Spatial Filtering is a technique to process signals in an optical way, where the 
irradiance content in the Fraunhofer plane is manipulated to control the irradiance 
pattern in the image plane. A digital element to provide Spatial Filtering in a 
dynamical way is coined as a spatial light modulator (SLM). SLM consists of an array 
of pixels, each capable of controlling the amplitude or phase of the illuminating field. 
For example, liquid crystal SLMs control the amplitude and phase of the transmitted 
or reflected light. Likewise, TI’s DLP SLM uses arrays of deformable micromirrors 
made by MEMS technology to adjust the amplitude and phase of the reflected light.  
 

 
 

 
 
The basic setup for optical spatial filtering is a telescopic lens system, consisting of 
two lenses. Quite often, we can assume that the two lenses have the same focal 

2R/λf1

ATF PSF

tchris
Typewritten Text
Examples of spatial light modulators removed due to copyright restrictions.
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length f for simplicity. Then the distance from the object to the processed image is 
4f .  For this reason such a system is called the 4-F setup for spatially filtering an 
image. 
 
The following examples are typical image processing setup using various types of 
spatial frequency filters: 
 

 
(a) Low pass filter: A circular aperture in the Fourier plane will block the high 

spatial frequencies and pass the low frequency ones. If the filter is an aperture 
of diameter a, the cutoff frequency is given by the condition: 

𝑘𝑐𝑢𝑡𝑜𝑓𝑓 =
𝑘𝑎

2𝑓1
     (13) 

That is, features smaller than the length scale of 2𝜆
𝑓1

𝑎
 is removed from the image.  

 

 
(b) High pass filter: A circular absorbing disk in the Fourier plane does the 

opposite to low pass filter. Features larger than the length scale of 2𝜆
𝑓1

𝑎
 are 

removed from the image. This filter is also called a dark field filter in the 
microscopy and used frequently in materials science, as it allows only light 
scattered from sharp edges (such as grain boundaries) to pass through the filter.  
  

Low pass 
filter

f1
f1 f2 f2

Input Output 
Screen

High pass 
filter

f1
f1 f2 f2

Input Output 
Screen
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(c) Step and Repeat operation 
 

C. The significance of PSF and ATF 

 
The theory of optical imaging and communication has a lot in common. The above 
imaging process might be modeled with an equivalent circuit. (Such analogy has 
stimulated research and development for basic operation such as multiplication, 
division, differentiation, correlation, etc. The application of the optical processing 
can be found in a variety of fields, such as, pattern recognition, computer aided 
vision, computed tomography, and image improvement. ) 
 

 
 

The typical distance between lenses and apertures are not large to meet 
Fraunhofer condition. Instead, we can use the following Fresnel 
propagator: 
 

h(x, y, x′, y′, z) =
exp(𝑖𝑘𝑧)

𝑧
𝑒𝑥𝑝(𝑖𝑘

(𝑥′−𝑥)
2
+(𝑦′−𝑦)

2

2𝑧
)   (14) 

 
In coherent illumination, the point spread function (PSF) describes the 
response of the lens system to an impulse 𝛿(𝑥, 𝑦) at the input field. If the 

Dot Array
Mask

f1
f1 f2 f2

Input Output 
Screen

lens, 
grating,

apertures

lens, 
grating, 

aperturesInput:
E(x, y)

Element 1 Element 2

Propagation or 
scattering

t1(x, y) t2(x’, y’)

h(x, x’, y, y’)

lens, 
grating, 

apertures

Propagation or 
scattering

h(x’, x”, y’, y”)

Element 3
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system is shift-invariant, then the observed image is a sum of all the field  
E(x”, y”) contributed by the spread of each point (x, y) from the object.  

 
 

 Under (spatially) coherent illumination, the image field is a convolution of 
object field with point spread function (PSF).  Correspondingly, the 
Amplitude Transfer Function (ATF) is the Fourier transform of PSF: 
 

𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") = 𝐸𝑜𝑏𝑗𝑒𝑐𝑡 (−
𝑓2

𝑓1
𝑥,−

𝑓2

𝑓1
𝑦)⨂𝑃𝑆𝐹(𝑥, 𝑦)  (15) 

𝐴𝑇𝐹(𝑘𝑥, 𝑘𝑦) = ∫∫𝑃𝑆𝐹(𝑥, 𝑦) exp(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑥𝑦) 𝑑𝑥𝑑𝑦  (16) 

 
e.g. ATF of single square aperture: 

 

𝐴𝑇𝐹 = 𝑟𝑒𝑐𝑡 (
𝑓1𝑘𝑥
𝑎𝑘

) 𝑟𝑒𝑐𝑡(
𝑓1𝑘𝑦
𝑏𝑘

) 

 
 Under (spatially) incoherent illumination, the image intensity is a 

convolution of object intensity with intensity of point spread function 
(iPSF=|PSF|2). Correspondingly, the (complex) Optical Transfer Function 
(OTF) is the Fourier transform of iPSF: 

 

𝐼𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") = 𝐼𝑜𝑏𝑗𝑒𝑐𝑡 (−
𝑓2

𝑓1
𝑥,−

𝑓2

𝑓1
𝑦)⨂|𝑃𝑆𝐹(𝑥, 𝑦)|2   (17) 

𝑂𝑇𝐹(𝑘𝑥, 𝑘𝑦) = ∫∫|𝑃𝑆𝐹(𝑥, 𝑦)|2 exp(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑥𝑦) 𝑑𝑥𝑑𝑦 = 𝐴𝑇𝐹 ⊗ 𝐴𝑇𝐹  (18) 

 
e.g. OTF of single square aperture: 

 

|𝑂𝑇𝐹| = Λ (
𝑓1𝑘𝑥

𝑎𝑘
) Λ(

𝑓1𝑘𝑦

𝑏𝑘
)      (19) 

 
 

E(x, y)

E(x”, y”)
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Simulated intensity pattern of a 5x5 checkerboard illuminated by a light source with different 
coherence. (left)100% coherent; (middle)50% coherent; (right) non-coherent. 

 
 

 
 
 

D. More specific examples on Coherent Imaging 
 

a. Zernike Phase-Contrast Imaging 
Zernike’s Phase Contrast is commonly used in biological microscopy to view 
transparent objects such as cellular membranes (that would otherwise require 
staining). 
 
Let’s consider a transparent object with a small phase shift in the following form: 

 

t(𝑥, 𝑦) = exp(𝑖𝑘(𝑛 − 1)ℎ(𝑥, 𝑦)) ≈ 1 + 𝑖𝑘(𝑛 − 1)ℎ(𝑥, 𝑦)   (20) 

 

 
When the transparent object is uniformly illuminated by a plane wave, the 
transmitted intensity is close to unity, leaving very low contrast. The idea behind 
the Zernike method starts with the observation that the unity part is the dc 
component in the Fourier plane, while 𝜙(𝑥, 𝑦) = 𝑘(𝑛 − 1)ℎ(𝑥, 𝑦) represents a 
spatial distribution in the Fourier spectrum.  
So what if we modify one of these to prevent the cancellation? Specifically, let’s 
try a 𝜋/2 phase shift of the dc component: 

.05666 mm

.
0
5
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6
6
 
m
m
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0.7026
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VIEW
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This model is often useful for imaging 

biological objects (cells, etc.)

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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𝑡(𝑥, 𝑦) = exp (𝑖
𝜋

2
) + 𝑖𝑘(𝑛 − 1)ℎ(𝑥, 𝑦) = 𝑖(1 + 𝑘(𝑛 − 1)ℎ(𝑥, 𝑦))   (21) 

 
𝐼(𝑥, 𝑦) ∝ |t(𝑥, 𝑦)|2 = 1 + 2𝑘(𝑛 − 1)ℎ(𝑥, 𝑦) + 𝑂(ℎ2)   (22) 

 
Now the transmitted intensity reflects the phase information. Actually, since the 
intensity with phase change is nearly linear for small phase shifts, this method 
gives a direct image of the phase that is simple to interpret. 
 
b. Schlieren Method 
 

 
       Schlieren (“streaks” in German) or shadowgraph imaging is important in the 
visualization of fluid flows, as it shows phase gradients of the object in a 
particular direction. To elaborate that effect, let’s model the transmission 
function of the phase mask (e.g. a glass wedge or spiral plate) as following: 
 

AS(𝑥′, 𝑦′) ≈ 1 + 𝑖𝑘(∆𝑛)(𝑥′/𝑎)     (23) 
 
The field transmitted through the fluid (𝑥, 𝑦) , is illuminating on the aperture: 
 

𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦) ∝ 𝑒𝑥𝑝[𝑖𝜙(𝑥, 𝑦)]    (24) 

 

𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ≈ ℱ (𝐴𝑆(𝑘𝑥
𝑓1
𝑘
, 𝑘𝑦

𝑓1
𝑘
) × ℱ (𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦))) 

𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ≈ ℱ ((1 + 𝑖(∆𝑛)𝑘𝑥
𝑓1
𝑎
) × ℱ (𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦))) 

                  𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ≈ 𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦) + (∆𝑛)
𝑓1

𝑎
ℱ (ℱ (

𝜕

𝜕𝑥
𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦)))  (25) 

 

Wedge 
Or spiral phase 

plate

f1
f1 f2 f2

Phase object
𝜙(𝑥)

Output 
Screen

𝑡 𝑥′ ≈ 1 + 𝑖𝑘 ∆𝑛 (𝑥′/𝑎)

𝐸𝑖 𝑎 𝑒 𝑥"

≈
 

 𝑥
𝐸𝑜𝑏𝑗𝑒𝑐𝑡 𝑥
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𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ≈ 𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦) + (∆𝑛)
𝑓1

𝑎

𝜕

𝜕𝑥
𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦)   (26) 

 

𝐸𝑖𝑚𝑎𝑔𝑒(𝑥", 𝑦") ≈ 𝐸𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦) [1 + 𝑖(∆𝑛)
𝑓1

𝑎

𝜕

𝜕𝑥
𝜙(𝑥, 𝑦)]   (27) 

 
 
 
Note that using a mask with phase gradient, the intensity fringes of image are 
connected to the index gradient of the fluid flow! Such effect was first reported 
by Hooke and Huygens, when they used a candle to heat up the air in front of an 
observing lens.  (see “Schlieren experiment 300 years ago”, by J. RIENITZ , 
Nature 254, 293 - 295 (27 March 1975); doi:10.1038/254293a0) 
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