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To	see	the	connection	to	geometric	optics,	we	
decompose	the	field	E(r,	)	into	two	forms:	a	
fast	oscillat
k / 	and	a	slowly	varying	envelope	

ing	component	exp(ik0),	
E0(r)	as	illustrated	in	the	textbox.

Furthermore,	if	the	envelope	of	field	varies	slowly	

 

with	wavelength	(e.g.		 ≪ 1,	 ≪ 1)	

then	we	can	convert	wave	equations	to	the	well‐
known	Eikonal	equation:	
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The	above	equation	yields:	| Φ| ,	or	| Φ| .	

This	is	equivalent	to	the	Fermat’s	Principle	on	optical	path	length	(OPL):	

| Φ| .	

	

Example	of	decomposition	of	E	
field	into	the	product	of	slowly	
varying	envelope	and	a	fast	
oscillating	phase	exp(ik Φ 	

E0(r)
Slowly varying envelope

E=E0 (r)exp(ik0)
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Such	process	requires	the	direction	of	the	light	path	
of	phase	contour	 Φ	(a	vector).	We	will	use	it	to	determine	
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Since	there	is	the	index	in	independent	of	z,	we	may	assume	the	slope	of	phase	
change	in	z	direction	is	linear:	
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									This	allows	us	to	find		
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From	Fermat’s	princ
phase	front:	

iple,	we	can	visualize	that	direction	of	rays	follow	the	gradient	of	

	

Φ	

	
z‐direction:	 	 	 	 C	

	

x‐direction:	 	 	 2 2	

	
Therefore,	the	light	path	(x,	z)	is	determined	by:	

C
	

	
Hence	

C
	

	
Without	loss	of	generality,	we	may	assume	a	quadratic	index	profile	along	the	x	

direction,	such	as	found	in	gradient	index	optical	fibers	or	rods:	
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To	find	the	
variable	x:	
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Or	more	commonly,		
	

	

	
As	you	can	see	in	this	example,	ray	propagation	in	the	gradient	index	waveguide	follows	a	

sinusoid	pattern!	The	periodicity	is	determined	by	a	constant	
√

	

.	
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Such	lens	was	mathemateically	con
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C. Superposition of Waves
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Waves in complex numbers
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eld	of	light	field	can	be	expressed	as:	
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‐ Complex numbers simply optics! 

. . 	

	

 

 
 

‐ Coherence 
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