MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

2.71/2.710 Optics

Spring 2014

Quiz 2

(Take Home, Open Book and Notes)

Posted: Wednesday, April 23, 2014
Written part Due: Wednesday, April 30, 2014
Please schedule a 30 minute individual meeting on April 30 and May 1

Estimated time: 90 min

1. The following figure illustrates a simplified Billet's split lens setup for interference. A point source is placed at the front focus of a convex lens with a diameter D. On the back for the convex lens, a thin, totally opaque block of width W is used to separate light passing through the upper and lower half of the lens. On the back focal plane, alternating dark and bright fringes are collected using a CCD detector. For simplicity, please assume a 2D problem (i.e., $\mathrm{y}=0$).

Let's assume the lens is is placed at the plane $z=0$ and illuminated by a spherical wave originating on-axis at location $z=-f($ where $f>0$.) Using the paraxial approximation for the spherical wave ($\mathrm{y}=0$),

$$
E(x, z=0)=\left.\left\{E_{0} \frac{\exp [i k(z+f)]}{i(z+f)} \exp \left[i k \frac{x^{2}}{2(z+f)}\right]\right\}\right|_{z=0}
$$

a) Derive an expression of the total E field that arrived at CCD detector;
b) Argue that the expression that you derived can be regarded as a coherent superposition of three spherical waves;
c) Discuss the origins (source position) of these spherical waves;
d) Explain how this diffraction pattern would change if the illumination were to move off-axis by a distance x_{0}, i.e.

$$
E(x, z=0)=\left.\left\{E_{0} \frac{\exp [i k(z+f)]}{i(z+f)} \exp \left[i k \frac{\left(x-x_{0}\right)^{2}}{2(z+f)}\right]\right\}\right|_{z=0}
$$

2. We are given a 4 F imaging system consisting of two identical lenses $\mathrm{L} 1, \mathrm{~L} 2$ with focal length $f=10 \mathrm{~cm}$. As an experiment, you attached a square mesh grid as amplitude mask at the pupil plane of the imaging system. In all questions below, the illumination is assumed to be at wavelength $\lambda=0.5 \mu \mathrm{~m}$. Assume spatial period $\Lambda=$ $10 \mu \mathrm{~m}$, stripe size $d=2 \mu \mathrm{~m}$, and edge lengths $a=5 \mathrm{~mm}, b=3 \mathrm{~mm}$.

Hint: First calculate the Fourier transforms of the grid and the aperture individually. Then use the convolution theorem.

Figure 2. 4F imaging system with a square mesh grid as amplitude mask (dark area is completely opaque, and white area is transparent) placed at pupil plane(X, Y).
a) Let's consider a coherent plane wave illuminating the input plane. Please calculate the output field and sketch the intensity pattern.
b) Now coherent a point source is placed at the origin of the input plane $(x=0)$, please calculate and plot the light intensity at the output plane with actual size of your image.
c) (2.710 only) Let's put a transparent stamp of the Tim the beaver at the input plane. The stamp measures 2 mm wide and 3 mm tall. What is the image at the output plane? Feel free to download one online and use Matlab to plot the resulting image.

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

