MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Mechanical Engineering

2.71/2.710 Optics

Spring 2012

Quiz 1

Monday, March 12, 2012

PLEASE DO NOT TURN OVER UNTIL EXAM STARTS

DURATION: 60min (9:35-10:35)

```
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Department of Mechanical Engineering
    2.71/2.710 Optics, Quiz 1
    Spring 2012, Monday, March 12, }201
```

1. A Binocular. The simplified optical diagram of an arm of a binocular can be considered as a telescope, which consists of two lenses of focal lengths $f_{1}=25 \mathrm{~cm}$ (objective) and $f_{2}=5 \mathrm{~cm}$ (eyepiece). The normal observer's eye is intended to be relaxed and the nominal focal length of the eye lens is taken to be $f_{\text {EL }}=40 \mathrm{~mm}$. The first prism is placed 5 cm away from the objective and the two prisms are separated by 2 cm .

a) (10\%) In order to make the binocular compact, a pair of 45° prisms (5 cm wide) are used, each of them is designed for total internal reflection of incoming rays. Estimate the index of refraction needed to meet such a requirement under paraxial beam approximation.

b-e) Assume the index of refraction of both prisms is 1.5.

b) (15\%) Please estimate the distance from the eyepiece to the back side of the second prism.
c) (20\%) If two distant objects are separated by $10^{-3} \mathrm{rad}$ to an observer with naked eye, how far apart (in units of length) will the images form on the observer's retina when the observer is using the binocular?
d) ($\mathbf{1 5 \%}$) An aperture ($\mathrm{D}=3 \mathrm{~cm}$) is placed inside the binocular, at a distance of $3 \mathbf{c m}$ to the left of the eyepiece. Please locate the Entrance Window and Exit Window, and calculate the Field of View.
e)(extra credit 10\%) Where is the optimum location of the observer's eye pupil in the configuration described by d)?
2. Reflection from a concave cavity. Figure 2 shows a reflective cavity made of concave mirrors, with light source \boldsymbol{s}. The cavity is designed to reflect all rays leaving the source \boldsymbol{s} to a point \boldsymbol{p} along the long axis of the cavity.

a) (10\%) Following Fermat's principles, the optical path length from \boldsymbol{s} to \boldsymbol{p} on any point (x, y) on the reflective cavity should be a constant. Please show such a constant is $\mathbf{2 a}$, the length of the long axis of the cavity.
b) (15\%) Using Cartesian coordinates, please prove that any point (x, y) on the reflective cavity must satisfy the following relationship:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Where $2 h=|S P|$ is the distance from \mathbf{s} to \mathbf{p}, and $b=\sqrt{a^{2}-h^{2}}$ is the length of the short axis of the cavity. Therefore, the cavity is an ellipse.
c) (15\%) Assume the cavity is large enough so you can go in, and a small object is placed on the left side of the source \boldsymbol{S}, as shown by the arrow in Figure 1. Use ray tracing, please locate the first reflected image of the object. Is it real or virtual?

GOOD LUCK!

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

