2.710
Quiz 2
50 min
8:05-8:55am EDT
8:05-8:55pm SST

2.710 Optics

QUIZ 2

Spring '09
Monday, April $27^{\text {th }}, 2009$

1. Interference Two plane waves of wavelength λ are propagating on the $x z-$ plane such that their electric fields at $(x=0, z=0)$ reach simultaneously their maximum positive values at $t=0$. The first plane wave's angle of propagation is $\pi / 6$ radians. The second plane wave's angle of propagation is $-\pi / 3$ radians, and its amplitude equals $1 / 2$ of the first plane wave's amplitude. We observe the interference pattern between the two plane waves on a screen parallel to the x axis and located at $z=0$.
a) $\mathbf{(1 0 \%)}$ What is the period of the interference pattern? (Express it as fraction of the wavelength λ.)
b) $\mathbf{(1 0 \%)}$) What is the value of the intensity at $x=0$? (Normalize such that the first plane wave, if propagating by itself, would produce intensity equal to 1.)
c) $\mathbf{(1 0 \%)}$ What is the contrast of the interference pattern?
d) $\mathbf{(1 0 \%)}$) If the first plane wave is phase-shifted by $\pi / 2$ radians, what is the new value of the intensity at $x=0$?

Figure 2.A

Figure 2.B
2. Spatial filtering Figure 2.A above shows a 4F imaging system with two identical lenses L1, L2 of focal length $f=5 \mathrm{~cm}$. The illumination wavelength is $\lambda=1 \mu \mathrm{~m}$. The transmissivity of the pupil mask is shown in Figure 2.B.

The input transparency is a binary amplitude grating of period $\Lambda=10 \mu \mathrm{~m}$, contrast 100%, and duty cycle 50%. This binary amplitude grating is expressed in a Fourier series as

$$
\begin{aligned}
g_{\mathrm{t}}(x) & =\frac{1}{2} \sum_{q=-\infty}^{+\infty} \operatorname{sinc}\left(\frac{q}{2}\right) \exp \left\{i 2 \pi q \frac{x}{\Lambda}\right\}, \quad \text { where } \\
\operatorname{sinc}(\xi) & \equiv \frac{\sin (\pi \xi)}{(\pi \xi)}
\end{aligned}
$$

a) $\mathbf{(2 0 \%})$ Express analytically and sketch, with as much detail as possible, the optical field immediately to the left of the pupil plane of the 4 F system.
b) (20\%) Express analytically the optical field $g_{\text {out }}\left(x^{\prime}\right)$ at the output plane of the 4 F system.
c) $\mathbf{(1 0 \%)}$ Evaluate the contrast at the output plane.
d) $\mathbf{(1 0 \%)}$) Your calculations should indicate that a local minimum value of the intensity in this imaging system occurs on-axis (i.e., at $x^{\prime}=0$). Devise a modification to the phase transmissivity of the pupil mask that would result in a local maximum value of intensity to occur at $x^{\prime}=0$.

GOOD LUCK!

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

