Telescope: refractive (dioptric)

Fig. 5.105, and 5.106 in Hecht, Eugene. *Optics*. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663. (c) Addison-Wesley. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

Purpose: to "magnify" thereby providing additional detail on a large, remote object

- Objective lens followed by an eyepiece
 - Objective: forms real, **de**magnified image of the object at the plane where the instrument's field stop is located
 - Eyepiece: its object plane is the objective's image plane and forms a virtual image at infinity
 - Objective's intermediate image location is fixed; eyepiece is moved to focus
- Special case: object at infinity
 - since the virtual image must be at infinity,* the distance between objective (o) and eyepiece (e) must satisfy

 $d = f_{\rm o} + f_{\rm e}$

 This type of instrument is known as afocal, because its focal length is undefined (the 12 matrix term is 0)

Magnifying power $MP \equiv \frac{\alpha_a}{\alpha_u} = -\frac{f_o}{f_e}$

* Recall that the eye lens forms the final real image on the retina

MIT 2.71/2.710 02/25/09 wk4-b-13

Telescope: reflective (catoptric)

Telescope: catadioptric

spherical mirror → spherical aberration (due to the difference from the ideal parabolic shape)

Schmidt's correction > toroidal glass surface deviates the rays so the reflections focus perfectly

(in practice, the design is more complicated because of the presence of aberrations other than spherical)

MIT 2.71/2.710 02/25/09 wk4-b-15

Aberrations

- Chromatic
 - is due to the fact that the refractive index of lenses, etc. varies with wavelength; therefore, focal lengths, imaging conditions, etc. are wavelengthdependent
- Geometrical
 - are due to the deviation of non-paraxial rays from the approximations we have used so far to derive focal lengths, imaging conditions, etc.; therefore, rays going through imaging systems typically do not focus perfectly but instead scatter around the "paraxial" (or "Gaussian") focus

Chromatic aberration

FIGURE 9X

(a) Cromatic aberration of a singel lens. (b) Acemented doublet corrected for chromatic aberration. (c) Illustrating the difference between longitudinal chromatic aberration and lateral chromatic aberration.

Geometrical aberrations

Geometrical aberration is the deviation of the wavefront produced by an optical system at the exit pupil, with respect to the ideal spherical wavefront that would have produced a point image.

Generally, computing aberrations is a complicated geometrical/algebraic exercise. Traditionally, and to gain intuition, aberrations have been studied as successive terms in a perturbation (Taylor) expansion of the aberrated wavefronts in the rotationally symmetric case.

Here, we will only consider only 3rd order aberrations.

Primary (Seidel) aberrations

Image by MIT OpenCourseWare.

Fig. 6.13, 6.14 in Hecht, Eugene. *Optics*. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663. (c) Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

How to orient an asymmetric (plano-convex lens) for spherical aberration-free focusing of a plane wave

Aplanatic surfaces and conjugate pointsFig. 6.17, 6.18 in Hecht, Eugene. Optics. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663.

(c) Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

03/02/09 wk5-a-7

Coma

Fig. 9I in Jenkins, Francis A., and Harvey E. White. *Fundamentals of Optics*. 4th ed. New York, NY: McGraw-Hill, 1976. ISBN: 9780070323308; Fig. 6.22 in Hecht, Eugene. *Optics*. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663. (c) McGraw-Hill and Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Simultaneous compensation of spherical and coma, using the lens form factor

Fig. 9L in Jenkins, Francis A., and Harvey E. White. *Fundamentals of Optics*. 4th ed. New York, NY: McGraw-Hill, 1976. ISBN: 9780070323308; Fig. 6.24 in Hecht, Eugene. *Optics*. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663. (c) McGraw-Hill and Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

The sine theorem and the sine condition

Figure by MIT OpenCourseWare.

Optical sine theorem (Clausius, 1863; Abbe, 1873; Helmholtz, 1873)

 $n_o y_o \sin \alpha_o = n_i y_i \sin \alpha_i.$

From this we deduce that there is no coma if

$$M_T \equiv \frac{y_i}{y_o}$$

is the same for all rays. For the paraxial rays,

$$n_{o,p}y_{o,p}\alpha_{o,p} = n_{i,p}y_{i,p}\alpha_{i,p},$$

so the constant magnification condition is satisfied. To satisfy the same condition for non–paraxial rays, we require

$$\frac{\sin \alpha_o}{\sin \alpha_i} = \frac{\alpha_{o,p}}{\alpha_{i,p}} = \text{const.} \quad \text{:sine condition}$$

2.71 / 2.710 Optics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

