Telescope: refractive (dioptric)

Fig. 5.105, and 5.106 in Hecht, Eugene. Optics. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663 . (c) Addison-Wesley. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

- Purpose: to "magnify" thereby providing additional detail on a large, remote object
- Objective lens followed by an eyepiece
- Objective: forms real, demagnified image of the object at the plane where the instrument's field stop is located
- Eyepiece: its object plane is the objective's image plane and forms a virtual image at infinity
- Objective's intermediate image location is fixed; eyepiece is moved to focus
- Special case: object at infinity
- since the virtual image must be at infinity, ${ }^{*}$ the distance between objective (o) and eyepiece (e) must satisfy

$$
d=f_{\mathrm{o}}+f_{\mathrm{e}}
$$

- This type of instrument is known as afocal, because its focal length is undefined (the 12 matrix term is 0)

Magnifying power $\quad \mathrm{MP} \equiv \frac{\alpha_{a}}{\alpha_{u}}=-\frac{f_{\mathrm{o}}}{f_{\mathrm{e}}}$

* Recall that the eye lens forms the final real image on the retina

Telescope: reflective (catoptric)

Cassegrain telescope

parallel ray bundle from star (point object at ∞)

Telescope: catadioptric

spherical mirror

- spherical aberration (due to the difference from the ideal parabolic shape)

Aberrations

- Chromatic
- is due to the fact that the refractive index of lenses, etc. varies with wavelength; therefore, focal lengths, imaging conditions, etc. are wavelengthdependent

Geometrical

- are due to the deviation of non-paraxial rays from the approximations we have used so far to derive focal lengths, imaging conditions, etc.; therefore, rays going through imaging systems typically do not focus perfectly but instead scatter around the "paraxial" (or "Gaussian") focus

Chromatic aberration

Fig. 9X,Y in Jenkins, Francis A., and Harvey E. White. Fundamentals of Optics. 4th ed. New York, NY: McGraw-Hill, 1976. ISBN: 9780070323308. (c) McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
(c)

Image plane

Lateral chromatic aberration

FIGURE 9X
(a) Cromatic aberration of a singel lens. (b) Acemented doublet corrected for chromatic aberration. (c) Illustrating the difference between longitudinal chromatic aberration and lateral chromatic aberration.

FIGURE 9 Y
Graphs of the refractive indices of several kinds of optical glass. Theseare called dispersion curves.

MIT 2.71/2.710

Geometrical aberrations

Geometrical aberration is the deviation of the wavefront produced by an optical system at the exit pupil, with respect to the ideal spherical wavefront that would have produced a point image.
Generally, computing aberrations is a complicated geometrical/algebraic exercise. Traditionally, and to gain intuition, aberrations have been studied as successive terms in a perturbation (Taylor) expansion of the aberrated wavefronts in the rotationally symmetric case. Here, we will only consider only $3^{\text {rd }}$ order aberrations.

Primary (Seidel) aberrations

Image by MIT OpenCourseWare.

Spherical

Fig. 6.13, 6.14 in Hecht, Eugene. Optics. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663. (c) Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

(a)

(b)

Spherical aberration and lens asymmetry (the \boldsymbol{q} factor)

$$
q \equiv \frac{r_{2}+r_{1}}{r_{2}-r_{1}}
$$

$$
p \equiv \frac{s_{\mathrm{o}}+s_{\mathrm{i}}}{s_{\mathrm{o}}-s_{\mathrm{i}}}
$$

How to orient an asymmetric (plano-convex lens) for spherical aberration-free focusing of a nlane wave

Fig. 9F,G in Jenkins, Francis A., and Harvey E. White. Fundamentals of Optics.
4th ed. New York, NY: McGraw-Hill, 1976. ISBN: 9780070323308 ; Fig. 6.16 in

Aplanatic surfaces and conjugate points

Fig. 6.17, 6.18 in Hecht, Eugene. Optics. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663.
(c) Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse.

Meniscus

(c)
(b)

Oil immersion microscope objective

Coma

Fig. 91 in Jenkins, Francis A., and Harvey E. White. Fundamentals of Optics. 4th ed. New York, NY: McGraw-Hill, 1976. ISBN: 9780070323308;
Fig. 6.22 in Hecht, Eugene. Optics. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663. (c) McGraw-Hill and Addison-Wesley.
All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

FIGURE 9 I
Coma, the second of the five monochromatic aberrations of a lens. Only the tangential fan of rays is shown.

Points on lens

Corresponding points on Σ_{i}

Simultaneous compensation of spherical and coma, using the lens form factor

Fig. 9L in Jenkins, Francis A., and Harvey E. White. Fundamentals of Optics. 4th ed. New York, NY: McGraw-Hill, 1976. ISBN: 9780070323308 ; Fig. 6.24 in Hecht, Eugene. Optics. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663. (c) McGraw-Hill and Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

FIGURE 9L
Graphs comparing coma with longitudinal spherical aberration for a series of lenses having different shapes.

Figure 6.24 A combination of two infinite conjugate lenses yielding a system operating at finite conjugates.

The sine theorem and the sine condition

Figure by MIT OpenCourseWare.
Optical sine theorem (Clausius, 1863; Abbe, 1873; Helmholtz, 1873)

$$
n_{o} y_{o} \sin \alpha_{o}=n_{i} y_{i} \sin \alpha_{i}
$$

From this we deduce that there is no coma if

$$
M_{T} \equiv \frac{y_{i}}{y_{o}}
$$

is the same for all rays. For the paraxial rays,

$$
n_{o, \mathrm{p}} y_{o, \mathrm{p}} \alpha_{o, \mathrm{p}}=n_{i, \mathrm{p}} y_{i, \mathrm{p}} \alpha_{i, \mathrm{p}}
$$

so the constant magnification condition is satisfied.
To satisfy the same condition for non-paraxial rays, we require

$$
\frac{\sin \alpha_{o}}{\sin \alpha_{i}}=\frac{\alpha_{o, \mathrm{p}}}{\alpha_{i, \mathrm{p}}}=\text { const. } \quad \text { :sine condition }
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

