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Supplement to Lecture 3–b 
Image formation by a composite lens 

Consider the system of two lenses shown in Figure 1. A unit-length object is located 
5 units to the left of lens L1 (focal length 10 units). L1 is located 5 units to the 
left of lens L2 (focal length 10 units as well.) We seek to determine the location of 
the image, and the magnification ml. We will carry out the derivation using three 
different methods: repeated application of the lens law, matrix algebra, and exploiting 
the concept of principal planes (which we have to first locate.) 

Applying the lens law repeatedly 
This method is described by Figures 2–5. We begin by considering the first lens 

(L1) in isolation, i.e. without L2. L1 will form an intermediate image of the object. 
As usual, we guess that the image is formed at a distance s1

� to the right of L1, and 
we also guess positive magnification m1,l, i.e. erect (upright) image. 

The imaging system with L1 in isolation is shown in Figure 2. Applying the lens 
law to this system we obtain 

1 1 1 
5

+ 
s1
� = 

10 
⇒ s� = −10; and 

m1,l = − 
s1
� 
= −−10 

= +2. 
5 5 

Since we found a negative image distance s1
� we conclude that our initial guess about 

the intermediate image location was incorrect: the intermediate image is located to 
the left of L1, so it is a virtual image. Since we found a positive magnification, we 
conclude that the intermediate image is erect. The correct configuration of object and 
intermediate image for L1 in isolation is shown in Figure 3. 

We now turn to consider L2 in isolation, i.e. without L1. The intermediate image 
formed by L1 acts as intermediate object for L2. Since we found the intermediate image 
to form 10 units to the left of L1, it is 15 units to the left of L2. The configuration 
of L2 in isolation with the intermediate object and an initial guess for real and erect 
image with (positive) magnification m2,l is shown in Figure 4. Applying the lens law 
to this system we obtain 

1 1 1 
+ = s� = +30; and 

15 s� 10 
⇒ 

s� +30 
m2,l = −

15 
= − 

15 
= −2. 
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Since we found a positive image distance s� we conclude that our initial guess about 
the intermediate image location was correct: the final image is located to the right of 
L1, so it is a real image. Since we found a negative magnification, we conclude that 
the final image is inverted. The overall magnification is 

ml = m1,lm2,l = (+2) × (−2) = −4. 

The correct configuration of object and final image is shown in Figure 5. 

Using the matrix formulation 
The system consists of a cascade of five elements, represented respectively by ma

trices as follows: 

M5 free–space propagation from object to L1 

M4 lens L1 

M3 free–space propagation from L1 to L2 

M2 lens L2 

M1 free–space propagation from L2 to the image 

The matrices are given, according to our paraxial approximation formulae, as follows: 

M5 =	
1 0

; M4 =
1 −1/10 

;
5 1 0 1 

M3 =	
1 0

; M2 =
1 −1/10 

;
5 1 0 1 

1 0 
and M1 = . 

s� 1 

The image distance s� is the unknown that we seek to determine. 
The overall system matrix is the product of the five matrices, ordered such that the 

element corresponding to the last element in the cascade appears first in the product; 
thus, 

M = M1M2M3M4M5. 

Consider a ray departing from the object, as shown in Figure 6. Let us denote the 
lateral coordinate and angle of departure of that ray as x, α, respectively; and let us 
denote the lateral coordinate and angle of arrival of that ray at the image plane as x�, 
α�, respectively. Since both the object and image are in air (index of refraction n = 1), 
the pairs of lateral and angular ray coordinates are related as� � � � � � � � 

x� x M11 M12 x 
α� 

= M 
α 

≡ 
M21 M22 α 

The matrix multiplication can be carried out in straightforward fashion (but rather 
tedious; it helps to note that M2M3 = M4M5, however.) The result is ⎛	 ⎞1 3 

x� ⎜ 
−

4 
−

20 ⎟ x⎜	 ⎟ 
α� 

= ⎝	 ⎠ α
. 

s� 15 3s� 1 − 
4

+ 
2 

− 
20 

+
2 
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As in the case of the simple thin lens, the imaging condition is 

∂x� 
= 0 M21 = 0,

∂α 
⇒ 

from which we find s� = +30. To find the lateral magnification, we observe that at the 
image plane the second row of the matrix equation is rewritten as 

x� =
 M21α + M22x = M22 M21=0 x.x�M21=0 ⇒ 

So the lateral magnification is


=
 −

3s� 1 

ml = M22 M21=0 +
 ⇒s�=30 ml⇒ = −4.
M21=0
20 2


Using the principal planes 
First we need to locate the principal planes (that’s some extra work, so the method 

of using the principal planes is efficient if we already know where they are.) 

Locating the principal planes using repeated application of the lens law 
We begin with the 2ndPP. We consider a parallel ray bundle (object at infinity) and 

choose one ray from the bundle at height, say, x, as shown in Figure 7. Our objective is 
to find where the optical system will focus this ray (intersect it with the optical axis; if 
the intersection location is independent of x, then all the rays from infinity are in focus 
at that point.) If we extend the focusing ray backwards till it intersects the incoming 
ray, then the plane of intersection is the 2ndPP. 

Once again, we first consider L1 in isolation. L1 by itself would focus the incoming 
rays from infinity to a distance equal to one focal length to the right of the lens, i.e. 
10 units. We refer to this as “intrermediate focus.” Then we consider L2 in isolation. 
Since 10 units to the right of L1 is 5 units to the right of L2, the intermediate focus of 
L1 acts as a virtual object for L2, as shown in Figure 9. The physical meaning of the 
virtual object is that the ray bundle coming towards L2 is already convergent, so the 
point of intersection of the rays is to the right of L2 (or, if you wish, the rays meet at 
a sink rather than a source.) 

To find where the image of the virtual object to L2 in isolation is located, we apply 
the lens law with a virtual object (negative object distance): 

1 1 1 10 
+ = s� = . 

−5 s� 10 
⇒ 

3 

This is the Back Focal Point (BFP), i.e. the location where the combination of L1&L2 
focuses an incoming ray bundle from infinity. The distance between the last element 
in the system (L2 in this case) and the BFP is the Back Focal Length (BFL). So 
BFL = 10/3 distance units in this system. 

To locate the principal plane, we also need to find the angle of intersection with the 
optical axis of a ray that arrived at infinity at a height x. This is done in two steps. 
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First, we notice that when L1 is in isolation, the angle α� of the focusing ray with the 
optical axis (Figure 8) is 

x 
α� .= −

10 
Next we calculate the angular magnification of the optical system of L2 in isolation, 
with the intermediate virtual object as shown in Figure 9. We find 

ma = −
s

s 
� = −

10

−
/

5

3
= 

3

2 
. 

The positive angular magnification indicates that an incoming convergent ray bundle 
will become even more strongly convergent after passing through L2. From that result, 
we find 

α� 3 3x 
α 

=
2 
⇒ α� = − 

20 
. 

From Figure 7 we then have 

x	 20 −
EFL 

= α� ⇒ EFL = 
3 

. 

Since the BFL is located 10/3 to the right of L2, the 2ndPP is located 10/3 to the left 
of L2. 

To find the 1stPP, in principle we would have to flip the optical system from left to 
right and repeat the above procedure. However, here we notice the obvious symmetry, 
so we conclude that the 1stPP is 10/3 units to the right of L1. 

Locating the principal planes using matrix algebra 
Consider again Figure 7. The vector description of the parallel ray bundle arriving 

to the left of L2 from a point object at infinity is 

αin 0 
= , 

xin x 

where x is the lateral coordinate (height, measured positively from the optical axis) of 
an arbitrary ray. To find the 2nd principal plane, we must first locate the back focal 
plane, i.e. where the parallel ray bundle comes to a focus, or equivalently the location 
where the lateral coordinate of all incoming rays becomes xout = 0. Let us denote as 
ξ the distance to the right of L2 of the back focal plane (that is, ξ is the same Back 
Focal Length (BFL) that we mentioned in the previous method.) To find ξ, we can 
apply the familiar matrix cascade as follows: � � � � � � � � � � � � 

αout 1 0 1 −1/10 1 0 1 −1/10 αin = 
xout ξ 1 0 1 5 1 0 1 xin 

After multiplying the square matrices and substituting αin = 0 (for an incoming parallel 
ray bundle) and xout = 0 (focusing condition for the incoming parallel ray bundle) we 
find ⎛ ⎞ � � 1 3 � � 

α� ⎜ 2 
−

20 ⎟ 0 
= ⎝	 ⎠

0	 ξ 3ξ 1 x 
2 

+ 5 −
20 

+ 
2 
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(Note: αout is the same angle α� shown in Figures 7 and 9.) From the second row of 
the above matrix equation we obtain 

3ξ 1 10 −
20

+
2 

= 0 ⇒ ξ = 
3 

= BFL. 

Now we can locate the 2nd principal plane in one of two possible ways: First, we can 
use the fact that the “12” element of the composite matrix we computed above equals 
−1/EFL; therefore, EFL = 20/3. The 2nd principal plane is located one EFL behind 
(i.e., to the left of) the BFP (please make sure not to be confused by the acronyms!!). 
Since the BFP is 10/3 distance units to the right of L2, 20/3 units behind the BFP 
would place the 2nd principal plane 10/3 distance units to the left of L2. (That’s 
gratifyingly the same 2nd principal plane location we calculated with the repeated 
application of lens law method.) 

Alternatively, we can use the fact that the angle of approach of the focusing ray 
towards the optical axis is 

3x 
αout = − . 

20 
(This follows from the first row of the above matrix equation.) Using Figure 7 again, 
we have 

x 3x 3 −
EFL 

= α� = − 
20 
⇒ EFL = 

20 
. 

To find the 1st principal plane we can flip the optical system from left to right and 
repeat the same procedure. The result would be identical, since this optical system is 
symmetric, as we’ve already pointed out. 

Using the principal planes to find the image location and magnification 
Now that we know the locations of the principal planes, we can apply the lens law to 

the composite system, except now we use as object distance the distance of the object 
from the 1stPP, as image distance we use the (unknown) distance of the image to the 
2ndPP, and instead of focal length we use the EFL. The two distances are denoted as 
so and so

�, respectively, in Figure 10. Applying the lens law, we obtain 

1 1 1 1 1 3 
+ = + = s� = 30. 

so so
� EFL 

⇒ 
5 + 10 

s� + 10 20 
⇒ 

3 3 

We can also obtain the overall lateral magnification of the system as 

ml = − 
so
� 

so 
= − 

s� + 10 
3 

5 + 10 
3 

= −4. 

Not surprisingly, we arrived at the same results as with the previous methods.
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