Overview

- Last lecture:
- spherical and plane waves
- perfect focusing and collimation elements:
- paraboloidal mirrors, ellipsoidal and hyperboloidal refractors
- imperfect focusing: spherical elements
- the paraxial approximation
- ray transfer matrices
- Today:
- paraxial ray tracing using the matrix approach
- thin lenses
- focal length and power of optical elements
- real and virtual images

Ray transfer matrices

Propagation through uniform space: distance d, index of refraction $n_{\text {left }}$

Refraction at spherical interface: radius R, indices $n_{\text {left }} n_{\text {right }}$

By using these elemental matrices, we may ray trace through an arbitrarily long cascade of optical elements (provided the paraxial approximation remains valid throughout.)

Spheres, ellipsoids, hyperboloids, and paraboloids in the paraxial approximation

This observation reassures us that the equations that we derived are applicable to any rotationally symmetric surface, within the paraxial approximation.

Sign conventions

- Light travels from left to right
- A radius of curvature is positive if the surface is convex towards the left
- Longitudinal distances are positive if pointing to the right
- Lateral distances are positive if pointing up
- Ray angles are positive if the ray direction is obtained by rotating the $+z$ axis counterclockwise through an acute angle

Types of refraction from spherical surfaces

- Positive power bends rays "inwards"

Positive power

- Negative power bends rays "outwards"

Negative power

Example: thin spherical lens in air

The "thickness" of the truncated spherical element is

$$
t=R-R \cos \phi=2 R \sin ^{2} \frac{\phi}{2}
$$

In the paraxial approximation,

$$
\alpha_{\max } \ll 1 \Rightarrow \phi_{\max } \ll 1 \quad \text { and } \quad t \sim \mathcal{O}\left(\phi^{2}\right) \Rightarrow t \approx 0
$$

That is, the thickness is negligible.

$$
\begin{aligned}
& \binom{\alpha_{\text {right }}}{x_{\text {right }}}=\left(\begin{array}{cc}
1 & -\frac{1-n}{R_{\text {right }}} \\
0 & 1
\end{array}\right)\binom{n \alpha_{1}}{x_{1}} \\
& \binom{n \alpha_{1}}{x_{1}}=\left(\begin{array}{cc}
1 & -\frac{n-1}{R_{\text {left }}} \\
0 & 1
\end{array}\right)\binom{\alpha_{\text {left }}}{x_{\text {left }}} \\
& \left.\begin{array}{c}
\Rightarrow \\
\Rightarrow \\
\alpha_{\text {right }} \\
x_{\text {right }}
\end{array}\right)=\left(\begin{array}{cc}
1 & -\frac{1-n}{R_{\text {right }}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{n-1}{R_{\text {left }}} \\
0 & 1
\end{array}\right)\binom{\alpha_{\text {left }}}{x_{\text {left }}} \\
& \left.=\left(\begin{array}{cc}
1 & -(n-1)\left(\begin{array}{c}
1 \\
0
\end{array}\right. \\
R_{\text {left }}
\end{array}-\frac{1}{R_{\text {right }}}\right)\right)\binom{\alpha_{\text {left }}}{x_{\text {left }}}
\end{aligned}
$$

Example: thin spherical lens in air

Note that, if the indeces of refraction to the left and right of the lens are the same, then a ray going through the optical center of the lens emerges parallel to the incident direction.
$\binom{\alpha_{\text {right }}}{x_{\text {right }}}=\left(\begin{array}{cc}1 & -\frac{1}{f} \\ 0 & 1\end{array}\right)\binom{\alpha_{\text {left }}}{x_{\text {left }}} \quad$ where
$P \equiv \frac{1}{f}=(n-1)\left(\frac{1}{R_{\text {left }}}-\frac{1}{R_{\text {right }}}\right) \quad \begin{gathered}\text { Lens maker's } \\ \text { Equation }\end{gathered}$
Consider a ray arriving from infinity at angle $\alpha_{1}=0$
(i.e., parallel to the optical axis) and at elevation x_{1}.

The ray is refracted by the thin lens and propagates a further distance z to the right of the lens.
We seek to determine its elevation x_{2} and angle of propagation α_{2} as function of z. We use the matrix approach:

$$
\begin{gathered}
\binom{\alpha_{2}}{x_{2}}=\left(\begin{array}{ll}
1 & 0 \\
z & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{1}{f} \\
0 & 1
\end{array}\right)\binom{\alpha_{1}}{x_{1}}=\left(\begin{array}{cc}
1 & -\frac{1}{f} \\
z & 1-\frac{z}{f}
\end{array}\right)\binom{\alpha_{1}}{x_{1}} \\
\Rightarrow x_{2}=\alpha_{1} z+x_{1}\left(1-\frac{z}{f}\right)=x_{1}\left(1-\frac{z}{f}\right) \quad\left(\text { since } \alpha_{1}=0 .\right)
\end{gathered}
$$

We observe that at $z=f \Rightarrow x_{2}=0$ for all x_{1}; i.e., all the rays from infinity converge to the optical axis independent of the elevation x_{1} at arrival.
We say that the plane wave from infinity comes to a focus at $z=f$, and f is referred to as focal length of the thin lens.

$$
P \equiv \frac{1}{f} \quad \text { is the lens power, measured in Diopters }\left[\mathrm{m}^{-1}\right] .
$$

We can easily see that if $\alpha_{1} \neq 0$, the rays still come to a focus at distance $z=f$ to the right of the lens, at elevation $x_{2}=\alpha_{1} f$.

This is the image of the (off-axis) source at infinity.

Types of lenses

- Positive lenses have positive power \Leftrightarrow positive focal length

Plano-convex lens

Bi-convex lens

- Negative lenses have negative power \Leftrightarrow negative focal length

Real and virtual images of a source at infinity

- A positive lens creates a real image of an object at infinity

- A negative lens creates a virtual image of an object at infinity

Image at infinity of real and virtual sources

- A positive lens will image a real object at infinity (collimate a diverging
 spherical wave)
- A negative lens will image a virtual object at infinity (collimate a converging
 spherical wave)

How to make sense of the sign conventions

- Recall: light propagates from left to right; therefore:
- if an object is to the left of the optical element
- then the distance from the object to the element is positive;
- if an object is to the right of the optical element
- then the distance from the object to the element is negative;
- if an image is to the right of the optical element
- then the distance from the element to the image is positive;
- if an image is to the left of the optical element
- then the distance from the element to the image is negative;

object to the left of the element

Sign conventions and off-axis objects

Consider an off-axis object at infinity, generating a plane wave with propagation angle α_{1} wrt the optical axis. In slide $\# 7$,
we derived the expression $x_{2}=\alpha_{1} f$ for the lateral coordinate of the image.
Now consider an off-axis object placed at distance $z=f$ to the left of the lens so the image is at infinity. We seek the propagation angle α_{2} of the exiting rays.

$$
\begin{aligned}
\binom{\alpha_{2}}{x_{2}}= & \left(\begin{array}{cc}
1 & -\frac{1}{f} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
z & 1
\end{array}\right)\binom{\alpha_{1}}{x_{1}} \\
= & \left(\begin{array}{cc}
1-\frac{z}{f} & -\frac{1}{f} \\
z & 1
\end{array}\right)\binom{\alpha_{1}}{x_{1}} \\
\Rightarrow\binom{\alpha_{2}}{x_{2}}= & \left(\begin{array}{cc}
0 & -\frac{1}{f} \\
f & 1
\end{array}\right)\binom{\alpha_{1}}{x_{1}} \\
& \Rightarrow \alpha_{2}=-\frac{x_{1}}{f}
\end{aligned}
$$

object at infinity

$$
x_{2}=\alpha_{1} f
$$

virtual image
image at infinity

$$
\alpha_{2}=-\frac{x_{1}}{f}
$$

몽ㅇN NUS ,

Nonionylumien
of Sirgapore

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

