
The Point-Spread Function (PSF) of a low-pass filter
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Now consider the same 4F system but replace the input transparency with an ideal point source, 

implemented as an opaque sheet with an infinitesimally small transparent hole and illuminated with a plane 

wave on axis (actually, any illumination will result in a point source in this case, according to Huygens.)

In Systems terminology, we are exciting this linear system with an impulse (delta-function); 

therefore, the response is known as Impulse Response. 

In Optics terminology, we use instead the term Point-Spread Function (PSF) and we denote it as h(x’,y’).

The sequence to compute the PSF of a 4F system is:

➡ observe that the Fourier transform of the input transparency δ(x) is simply 1 everywhere at the pupil plane

➡ multiply 1 by the complex amplitude transmittance of the pupil mask 
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➡ Fourier transform the product and scale to the output plane coordinates x’=uλf2. 
➡Therefore, the PSF is simply the Fourier transform of the pupil mask, scaled to the output coordinates x’=uλf2 



Example: PSF of a low-pass filter

PSF
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The output field, i.e. the PSF is 

The pupil mask is . If the input transparency is δ(x), the field at the pupil plane to the 

right of the pupil mask is 
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The scaling factor (3×) in the PSF ensures that the integral ∫|h(x’)|2dx equals the portion of the input energy 
MIT 2.71/2.710 transmitted through the system 
04/15/09 wk10-b-23 



Example: PSF of a phase pupil filter


The pupil mask is 


The PSF is
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Comparison: low-pass filter vs phase pupil mask filter
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PSF: phase pupil mask filter
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Shift invariance of the 4F system
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The significance of the PSF
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Finally, consider the same 4F system with an input transparency whose transmittance is an arbitrary complex 
function gt(x) and the field gin(x) immediately to the right of the input transparency. 

According to the sifting theorem for δ-functions, we may express gin(x) as 

Physically, this expresses a superposition of point sources weighted by the input field, i.e. Huygens’ principle. 

Using the shift invariance property, we find that the field produced at the output plane by each Huygens point 
source is the PSF, shifted by −x1×f2 ⁄f1, (note: −f2 ⁄f1 is the lateral magnification) and weighted by gin(x1); i.e., 

the output field is almost a convolution (within a sign & 
a scaling factor) of the input field with the PSF: 
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The Amplitude Transfer Function (ATF)
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To avoid the mathematical complications of inversion and lateral magnification at the output plane, we define 
the “reduced” output coordinate . Inverted and re-sampled in the reduced coordinate, the output 

field is expressed simply as a convolution . 

Using the convolution theorem of Fourier transforms, we can re-express this input-output relationship in the 
spatial frequency domain as , where H(u) is the amplitude transfer function (ATF). 
Inverting the Fourier transform relationship between gPM(x”) and the PSF, we obtain  
That is, the ATF of the 4F system is obtained directly from the pupil mask, via a 

coordinate scaling transformation. 
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Example: ATFs of the low-pass filter and the phase pupil mask 
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Today


•	 Lateral and angular magnification 
•	 The Numerical Aperture (NA) revisited 
•	 Sampling the space and frequency domains, and 

the Space-Bandwidth Product (SBP) 
•	 Pupil engineering 

next two weeks 
•	 Depth of focus and depth of field 
•	 The angular spectrum 
•	 “Non-diffracting” beams 
•	 Temporal and spatial coherence 
•	 Spatially incoherent imaging 
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4F imaging as a linear shift invariant system
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at the output plane
Illumination: Input transparency: 
Field to the right of the input transparency (input field): 

Pupil mask: Amplitude transfer function (ATF): 

Point Spread Function (PSF): 
in actual coordinates 

in reduced coordinates 

Output field: in actual coordinates 

in reduced coordinates 

∝ 

∝ 

∝ 
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Lateral magnification
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An ideal imaging system with a point source as input field should form a point image at the output plane. 
Therefore, the ideal PSF is a δ-function. This is of course the limit of Geometrical Optics and in practice 
unachievable because of diffraction; alternatively, it implies that the spatial bandwidth is infinite, or that the 
lateral extent of the pupil mask is infinite. Both conditions are non-physical; however, for the purpose of 
calculating the geometrical magnification, let us indeed assume that 
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So our calculation has reproduced the Geometrical 
Optics result for a telescope with finite conjugates: 

∝ 



Angular magnification
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spatialNow let us consider a plane wave input field frequency 

Still assuming the ideal geometrical PSF, the output field is


So the angular magnification is again in agreement with Geometrical Optics. 

Based on the interpretation of propagation angle as spatial frequency, the magnification results are also in 

∝ 

agreement with the scaling (similarity) theorem of Fourier transforms:
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Example: PM, ATF and PSF for clear apertures 
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Numerical aperture (NA) and PSF size
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The pupil mask is the system aperture (assuming that the lenses are sufficiently large); therefore, 
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Let Δx’ denote 
the half-size of 
the PSF main 
lobe; then, 

PSF 

Let Δr’ denote 
the radius of the 
PSF main lobe; 
then, 



fx,max

A note on sampling 
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δx :pixel size 

Δx :field size 
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sampling 
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δu :frequency resolution 

2Δu :frequency bandwidth 

δx” :PM pixel size


2Δx” :pupil mask size
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Product 
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Pupil engineering
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Amplitude transfer function (ATF): 

Point Spread Function (PSF): in actual coordinates 
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∝ 
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input field after objective after pupil mask to form the image 
at the output plane 

Pupil engineering is the design of a pupil mask gPM(x”,y”) such that the ATF, the PSF 
or the output field meet requirement(s) specified by the user of the imaging system 
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Example: spatial frequency clipping
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MIT 2.71/2.710 
04/22/09 wk11-b- 9 



Spatial filtering examples: the amplitude MIT pattern
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Weak low-pass filtering


f1=20cm pupil mask Intensity @ image plane 
λ=0.5µm 
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Moderate low-pass filtering


(moderate blurring) 

f1=20cm pupil mask Intensity @ image plane 
λ=0.5µm 
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Strong low-pass filtering


(strong blurring) 

f1=20cm pupil mask Intensity @ image plane 
λ=0.5µm 
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Moderate high-pass filtering


f1=20cm pupil mask Intensity @ image plane 
λ=0.5µm 
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Strong high-pass filtering


(edge enhancement) 

f1=20cm pupil mask Intensity @ image plane 
λ=0.5µm 
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One-dimensional (1D) blur: vertical


f1=20cm pupil mask Intensity @ image plane 
λ=0.5µm 
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One-dimensional (1D) blur: horizontal


f1=20cm pupil mask Intensity @ image plane 
λ=0.5µm 
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Phase objects
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This model is often useful for imaging 
biological objects (cells, etc.) 

If we illuminate 
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uniformly (e.g., 

with a plane 

wave) the 


resulting intensity

|gin(x)|2 is also 


uniform, i.e. the 

object is invisible.
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phase-shifts

coherent illumination


by amount φ(x) =2π(n-1)t(x)/λ


To visualize 
phase objects in 

subsequent 
slides, we use the 

color 
representation of 
phase as shown 
here. Physically, 
phase may be 
measured with 
interferometry. 



The Zernike phase pupil mask


5mm 
The Zernike mask is a phase pupil mask π/2 1mm 
used often to visualize input transparencies 
that are themselves phase objects. The 
Zernike mask imparts phase delay of π/2 
near the center of the pupil plane, i.e. at 
the lower spatial frequencies. The result at Use of the Zernike phase mask is also
the output plane is intensity contrast at the called phase contrast imaging.
edges of the phase object. 
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Phase contrast (Zernike mask) imaging
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Phase contrast imaging the MIT phase object


f1=20cm pupil mask Intensity @ image plane 
λ=0.5µm 
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Phase contrast imaging the MIT phase object


f1=20cm pupil mask Intensity @ image plane 
λ=0.5µm 
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The transfer function of Fresnel propagation


Fresnel (free space) propagation 

may be expressed as a


convolution integral
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The Talbot effect
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Talbot effect: still shots
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Physical explanation of the Talbot effect
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replicates field at grating 
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1 period shift wrt grating 2 
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2 , ± 32 

π , . . . 
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MIT 2.71/2.710 
04/08/09 wk9-b-29 



Mathematical derivation of the Talbot effect /1


• Field immediately past grating 
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Mathematical derivation of the Talbot effect /2 
• Fourier transform (spatial spectrum) of field propagated to distance z, 

G(u, v; z) = 	G(u, v; 0) × H(u, v; z)
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Mathematical derivation of the Talbot effect /3 
• Our previous result 
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Mathematical derivation of the Talbot effect /4


• Special cases of propagation distance 

Talbot plane 

(shifted) Talbot plane 
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The Talbot planes 
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