The law of reflection

Reflection from mirrors

The law of refraction (Snell's Law)

Let P, P^{\prime} denote two points along the ray trajectory. According to the
Fermat principle, the angle θ must be such as to minimize the optical path length between $P P^{\prime}$.
This is expressed as
$(\mathrm{OPL})=n \sqrt{x^{2}+z^{2}}+n^{\prime} \sqrt{(h-x)^{2}+z^{\prime 2}}$.
Taking derivatives with respect to x,

$$
\begin{gathered}
\frac{\partial(\mathrm{OPL})}{\partial x}=n \frac{x}{\sqrt{x^{2}+z^{2}}}-n^{\prime} \frac{h-x}{\sqrt{(h-x)^{2}+z^{\prime 2}}}=n \sin \theta-n^{\prime} \sin \theta^{\prime}=0 \\
\Rightarrow n \sin \theta=n^{\prime} \sin \theta^{\prime}
\end{gathered}
$$

This result is known as Snell's Law, or Law of Refraction.

Snell's Law as minimum time principle

Which path should the lifeguard follow to reach the drowning person in minimum time?

Snell's Law as momentum conservation principle

Descartes sphere for less optically dense medium, radius n.

Let \mathbf{p} and \mathbf{p}^{\prime} denote the ray momenta in the two media, respectively.
A change in the longitudinal momentum $\mathbf{p}_{\|} \neq \mathbf{p}_{\|}^{\prime}$ is permissible, because of the medium change along the optical axis.
However, the lateral momentum must be conserved:

$$
\mathbf{p}_{\perp}=\mathbf{p}_{\perp}^{\prime} \Rightarrow n \sin \theta=n^{\prime} \sin \theta^{\prime} \text { (i.e. Snell's law.) }
$$

Two types of refraction

from lower to higher index (towards optically denser material)
angle wrt normal decreases
the maximum angle θ^{\prime}
that can enter the optically dense medium is such that

$$
n^{\prime} \sin \theta^{\prime}=n
$$

Total Internal Reflection (TIR)

at angles of incidence higher than critical, the light is totally internally reflected almost as if the glass-air interface were a mirror
in both cases of surface wave and TIR, there is an exponential tail of electric field leaking into the medium of lower optical density; this is called the evanescent wave.

Frustrated Total Internal Reflection (FTIR)

If another dielectric approaches within a few distant constants from the TIR interface, the tail of the exponentially evanescent wave becomes propagating; i.e. the light couples out of the medium.

This situation is known as Frustrated Total Internal Reflection (FTIR).
In quantum mechanics, there is an analogous effect known as tunneling.
We will compute the amount of energy coupled out of the medium of incidence later, after we study the electromagnetic nature of light.

Prisms

retro-reflector

Fingerprint sensors

Optical waveguides

$$
n_{1}>n 2
$$

"planar" waveguide: high-index dielectric material sandwiched between lower-index dielectrics

Numerical Aperture (NA) of a waveguide

NA is the sine of the largest angle that is waveguided

$$
(\mathrm{NA}) \equiv \sin \theta_{0} \leq \sqrt{n_{1}^{2}-n_{2}^{2}}
$$

i.e., NA is the incident angle of acceptance of the waveguide

$$
\text { high index contrast }\left(n_{1} / n_{2}\right) \Leftrightarrow \text { high NA }
$$

GRadient INdex (GRIN) waveguide

If the TIR condition $n_{\max } \sin \theta_{0}$ is satisfied,
TIR will always occur at one of the outer cladding interfaces;
therefore, the ray bends backwards and is guided by the GRIN structure.
In the limit of infinitesimally small layer thicknesses and continuous index
variation, the ray path becomes a smooth periodic trajectory.
In the special case $n(x)=n_{\max }-\kappa x^{2}$, the ray trajectory becomes sinusoidal.

Optical fibers: step cladding

Core diameter $=8-10 \mu \mathrm{~m}$ (commercial grade)
Cladding diameter $=250 \mu \mathrm{~m}$ (commercial grade) Index contrast $\Delta n=0.007$ (very low NA) attenuation $=0.25 \mathrm{~dB} / \mathrm{km}$

Optical fibers: GRIN

optical rays "swirl" in a helical trajectory around the axis of the core

GRIN waveguides in nature: insect eyes

Images removed due to copyright restrictions.
Please see
http://commons.wikimedia.org/wiki/File:Superposkils.gif

Image by Thomas Bresson at Wikimedia Commons.

Dispersion

Figure by MIT OpenCourseWare. Adapted from Fig. 2.4 in Bach, Hans, and Norbert Neuroth. The Properties of Optical Glass. New York, NY: Springer, 2004.

Dispersion from a prism

Dispersion measures

Reference color lines
C (H- $\lambda=656.3 \mathrm{~nm}$, red),
D (Na- $\lambda=589.2 \mathrm{~nm}$, yellow),
F (H- $\lambda=486.1 \mathrm{~nm}$, blue)
e.g., crown glass has

$$
n_{\mathrm{F}}=1.52933 \quad n_{\mathrm{D}}=1.52300 \quad n_{\mathrm{C}}=1.52042
$$

Dispersive power $\quad V=\frac{n_{\mathrm{F}}-n_{\mathrm{C}}}{n_{\mathrm{D}}-1}$
Dispersive index $\quad v=\frac{1}{V}=\frac{n_{\mathrm{D}}-1}{n_{\mathrm{F}}-n_{\mathrm{C}}} \quad$ aka Abbe's number
e.g. for crown glass: $V=0.01704$ or $v=58.698$

Paraboloidal reflector: perfect focusing

focus at F

A paraboloidal reflector focuses a normally incident plane wave to a point

What should the shape function $s(x)$ be in order for the incoming parallel ray bundle to come to perfect focus?

The easiest way to find the answer is to invoke Fermat's principle:
since the rays from infinity follow the minimum path before they meet at P, it follows that they must follow the same path.

$$
\begin{gathered}
2 f=f-s+\sqrt{x^{2}+(f-s)^{2}} \\
f+s=\sqrt{x^{2}+(f-s)^{2}}
\end{gathered}
$$

$$
x^{2}=(f+s)^{2}-(f-s)^{2} \Rightarrow
$$

$$
\begin{aligned}
& =4 s f \\
s(x) & =\frac{x^{2}}{4 f}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

