Fourier transforming property of lenses

Field before lens $\quad g_{\text {lens }}\left(x^{\prime}\right)=\int g(x) \exp \left\{i \pi \frac{\left(x^{\prime}-x\right)^{2}}{\lambda z}\right\} \mathrm{d} x$
Field after lens $\quad g_{\text {lenst }}\left(x^{\prime}\right)=g_{\text {lens- }}\left(x^{\prime}\right) \exp \left\{-i \pi \frac{x^{\prime 2}}{\lambda f}\right\}$
1D calculation

$$
g_{f}\left(x^{\prime \prime}\right)=\exp \left\{i \pi \frac{x^{\prime \prime 2}}{\lambda f}\left(1-\frac{z}{f}\right)\right\} \int g(x) \exp \left\{-i 2 \pi \frac{x x^{\prime \prime}}{\lambda f}\right\} \mathrm{d} x
$$

2 D version
Field at back f.p. $\quad g_{\mathrm{f}}\left(x^{\prime \prime}\right)=\int g_{\text {lens }}\left(x^{\prime}\right) \exp \left\{i \pi \frac{\left(x^{\prime \prime}-x^{\prime}\right)^{2}}{\lambda f}\right\} \mathrm{d} x^{\prime} \quad g_{\mathrm{f}}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\exp \left\{i \pi \frac{x^{\prime \prime 2}+y^{\prime \prime 2}}{\lambda f}\left(1-\frac{z}{f}\right)\right\} \iint g(x, y) \exp \left\{-i 2 \pi \frac{x x^{\prime \prime}+y y^{\prime \prime}}{\lambda f}\right\} \mathrm{d} x \mathrm{~d} y$

$$
\begin{aligned}
g_{\mathrm{f}}\left(x^{\prime \prime}, y^{\prime \prime}\right) & =\exp \left\{i \pi \frac{x^{\prime \prime 2}+y^{\prime \prime 2}}{\lambda f}\left(1-\frac{z}{f}\right)\right\} \iint g(x, y) \exp \left\{-i 2 \pi \frac{x x^{\prime \prime}+y y^{\prime \prime}}{\lambda f}\right\} \mathrm{d} x \mathrm{~d} y \\
& \therefore g_{\mathrm{f}}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\underbrace{\exp \left\{i \pi \frac{x^{\prime \prime 2}+y^{\prime \prime 2}}{\lambda f}\left(1-\frac{z}{f}\right)\right\} \underbrace{G}\left(\frac{x^{\prime \prime}}{\lambda f}, \frac{y^{\prime \prime}}{\lambda f}\right)}_{\begin{array}{c}
\text { Fourier transform } \\
\text { of } g(x, y)
\end{array}}
\end{aligned}
$$

Fourier transform by far field propagation or lens

$$
g_{\text {out }}\left(x^{\prime}, y^{\prime} ; l\right) \propto \iint g_{\text {in }}(x, y) \exp \left\{-i 2 \pi\left[x\left(\frac{x^{\prime}}{\lambda l}\right)+y\left(\frac{y^{\prime}}{\lambda l}\right)\right]\right\} \mathrm{d} x \mathrm{~d} y
$$

$$
g_{\text {out }}\left(x^{\prime}, y^{\prime} ; f\right) \propto \iint g_{\text {in }}(x, y) \exp \left\{-i 2 \pi\left[x\left(\frac{x^{\prime}}{\lambda f}\right)+y\left(\frac{y^{\prime}}{\lambda f}\right)\right]\right\} \mathrm{d} x \mathrm{~d} y
$$

Spherical-plane wave duality

point source at (x, y)
amplitude $g_{\text {in }}(x, y)$

plane wave oriented
towards $\left(-\frac{x}{\lambda f},-\frac{y}{\lambda f}\right)$
... of plane waves corresponding to point sources in the object

$$
g_{\text {out }}\left(x^{\prime}, y^{\prime}\right) \propto \iint g_{\text {in }}(x, y) \exp \left\{i 2 \pi\left[\left(-\frac{x}{\lambda f}\right) x^{\prime}+\left(-\frac{y}{\lambda f}\right) y^{\prime}\right]\right\} \mathrm{d} x \mathrm{~d} y
$$

a plane wave departing from the transparency at angle $\left(\theta_{x}, \theta_{y}\right)$ has amplitude equal to the Fourier coefficient
produces a spherical wave converging
towards $\left(\frac{\theta_{x}}{\lambda} \times(\lambda f) \frac{\theta_{y}}{\lambda} \times(\lambda f)\right)=\left(\theta_{x} f, \theta_{y} f\right)$
each output coordinate at frequency $\left(\theta_{x} / \lambda, \theta_{y} / \lambda\right)$ of $g_{\text {in }}(x, y)$ $\left(x^{\prime}, y^{\prime}\right)$ receives amplitude equal to that of the corresponding Fourier component

$$
g_{\text {out }}\left(x^{\prime}, y^{\prime}\right) \propto \iint g_{\text {in }}(x, y) \exp \left\{-i 2 \pi\left[x\left(\frac{x^{\prime}}{\lambda f}\right)+y\left(\frac{y^{\prime}}{\lambda f}\right)\right]\right\} \mathrm{d} x \mathrm{~d} y
$$

The two pictures above are interpretations of the same physical phenomenon.
On the left, the transparency is interpreted in the Huygens sense as a superposition of "spherical wavelets."
Each spherical wavelet is collimated by the lens and contributes to the output a plane wave, propagating at the appropriate angle (scaled by f.)
On the right, the transparency is interpreted in the Fourier sense as a superposition of plane waves ("angular" or "spatial frequencies.") Each plane wave is transformed to a converging spherical wave by the lens and contributes to the output, f to the right of the lens, a point image that carries all the energy that departed from the input at the corresponding spatial frequency.

Fourier transforming by lenses

Imaging: the 4F system

The 4F system (telescope with finite conjugates one focal distance to the left of the objective and one focal distance to the right of the collector, respectively) consists of a cascade of two Fourier transforms

$$
\mathcal{F}\{\mathcal{F}\{g(x, y)\}\}=g(-x,-y)
$$

plane wave illumination

Spatial filtering: the 4F system

Spatial frequencies which have the misfortune of hitting the opaque portions of the pupil plane transparency vanish from the output. Of course the transparency may be gray scale (partial block) or a phase mask; the latter would introduce relative phase delay between

Imaging and spatial filtering: physical justification

Today

- Spatial filtering in the 4F system
- The Point-Spread Function (PSF) and Amplitude Transfer Function (ATF)

next Wednesday

- Lateral and angular magnification
- The Numerical Aperture (NA) revisited
- Sampling the space and frequency domains, and the Space-Bandwidth Product (SBP)
- Pupil engineering

Spatial filtering by a telescope (4F system)

Low-pass filtering: analysis

field after input transparency

$$
g_{\text {in }}(x)=\frac{1}{2}\left[1+\cos \left(2 \pi u_{0} x\right)\right] \Rightarrow G_{\text {in }}(u)=\frac{1}{2}\left[\delta(u)+\frac{1}{2} \delta\left(u-u_{0}\right)+\frac{1}{2} \delta\left(u+u_{0}\right)\right]
$$

field before pupil mask

$$
g_{\mathrm{f}-}\left(x^{\prime \prime}\right)=\frac{1}{2}\left[\delta\left(x^{\prime \prime}\right)+\frac{1}{2} \delta\left(x+u_{0}\right)+\frac{1}{2} \delta\left(x^{\prime \prime} \times 2 v_{0}\right)\right]
$$

field after pupil mask

$$
g_{\mathrm{f}+}\left(x^{\prime \prime}\right)=\frac{1}{2} \delta\left(x^{\prime \prime}\right)
$$

field at output
(image plane)

$$
G_{\text {out }}(u)=\frac{1}{2} \delta(u) \Rightarrow g_{\text {out }}\left(x^{\prime}\right)=\frac{1}{2}
$$

Example: low-pass filtering a binary amplitude grating

Consider a binary amplitude grating, with perfect contrast $m=1$, period $\Lambda=10 \mu \mathrm{~m}$, duty cycle $1 / 3$ (33.3\%), illuminated by an on-axis plane wave at wavelength $\lambda=0.5 \mu \mathrm{~m}$.
The 4F system consists of two identical lenses of focal length $f=20 \mathrm{~cm}$.
A pupil mask of diameter (aperture) 3 cm is placed at the Fourier plane, symmetrically about the optical axis.
What is the intensity observed at the output (image) plane?
The sequence to solve this kind of problem is:
\Rightarrow calculate the Fourier transform of the input transparency and scale to the pupil plane coordinates $x "=u \lambda f_{1}$

- multiply by the complex amplitude transmittance of the pupil mask
\Rightarrow Fourier transform the product and scale to the output plane coordinates $x^{\prime}=u \lambda f_{2}$

Example: low-pass filtering a binary amplitude grating

binary amplitude grating

pupil mask

A binary amplitude grating of duty cycle α is expressed in a Fourier series harmonics expansion as $g_{\mathrm{t}}(x)=\alpha \sum_{q=-\infty}^{+\infty} \operatorname{sinc}(\alpha q) \exp \left\{i 2 \pi q \frac{x}{\Lambda}\right\} \Rightarrow G_{\mathrm{t}}(u)=\alpha \sum_{q=-\infty}^{+\infty} \operatorname{sinc}(\alpha q) \delta\left(u-\frac{q}{\Lambda}\right)$
The field at the pupil plane to the left of the pupil mask is
$g_{\mathrm{PP}-}\left(x^{\prime \prime}\right)=G_{\mathrm{t}}\left(\frac{x^{\prime \prime}}{\lambda f}\right)=\alpha \sum_{q=-\infty}^{+\infty} \operatorname{sinc}(\alpha q) \delta\left(\frac{x^{\prime \prime}}{\lambda f}-\frac{q}{\Lambda}\right)=\frac{1}{3} \sum_{q=-\infty}^{+\infty} \operatorname{sinc}\left(\frac{q}{3}\right) \delta\left(x^{\prime \prime}-q \times 1 \mathrm{~cm}\right)$
IIIT

Example: low-pass filtering a binary amplitude grating

binary amplitude grating

pupil mask

The pupil mask itself is $g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\operatorname{rect}\left(\frac{x^{\prime \prime}}{3 \mathrm{~cm}}\right)$ so the field at the pupil plane to the right of the pupil mask is
$g_{\mathrm{PP}+}\left(x^{\prime \prime}\right)=g_{\mathrm{PP}-}\left(x^{\prime \prime}\right) \times g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\frac{1}{3} \delta\left(x^{\prime \prime}\right)+\frac{\sqrt{3}}{2 \pi} \delta\left(x^{\prime \prime}-1 \mathrm{~cm}\right)+\frac{\sqrt{3}}{2 \pi} \delta\left(x^{\prime \prime}+1 \mathrm{~cm}\right)$
Its Fourier transform is $\quad G_{\mathrm{PP}+}(u)=\frac{1}{3}+\frac{\sqrt{3}}{2 \pi} \exp \{i 2 \pi u \times 1 \mathrm{~cm}\}+\frac{\sqrt{3}}{2 \pi} \exp \{-i 2 \pi u \times 1 \mathrm{~cm}\}$
from which we may obtain the output field as $\quad g_{\text {out }}\left(x^{\prime}\right)=G_{\mathrm{PP}+}\left(\frac{x^{\prime}}{\lambda f}\right)$

Example: low-pass filtering a binary amplitude grating

binary amplitude grating

pupil mask

Note the $2^{\text {nd }}$ harmonic term in the intensity, due to the magnitude-square operation! This term explains the "ringing" in coherent low-pass filtering systems

The output intensity is $\quad I_{\text {out }}\left(x^{\prime}\right)=\left|g_{\text {out }}\right|^{2}\left(x^{\prime}\right)=\left[\frac{1}{3}+\frac{\sqrt{3}}{\pi} \cos \left(2 \pi \frac{x^{\prime}}{10 \mu \mathrm{~m}}\right)\right]^{2}$

$$
=\left(\frac{1}{3}\right)^{2}+\frac{2}{\pi \sqrt{3}} \cos \left(2 \pi \frac{x^{\prime}}{10 \mu \mathrm{~m}}\right)+\frac{3}{\pi^{2}} \cos ^{2}\left(2 \pi \frac{x^{\prime}}{10 \mu \mathrm{~m}}\right)
$$

$$
=\left(\frac{1}{3}\right)^{2}+\frac{3}{2 \pi^{2}}+\frac{2}{\pi \sqrt{3}} \cos \left(2 \pi \frac{x^{\prime}}{10 \mu \mathrm{~m}}\right)+\frac{3}{2 \pi^{2}} \cos \left(2 \pi \frac{2 x^{\prime}}{10 \mu \mathrm{~m}}\right) \square \text { 믄 }
$$

Example: low-pass filtering a binary amplitude grating

binary amplitude grating

 pupil mask

low-pass filtered
binary amplitude grating

Example: band-pass filtering a binary amplitude grating

Now consider the same optical system, but with a new pupil mask consisting of two holes, each of diameter (aperture) 1 cm and centered at $\pm 1 \mathrm{~cm}$ from the optical axis, respectively.
What is the intensity observed at the output (image) plane?

Example: band-pass filtering a binary amplitude grating

binary amplitude grating

pupil mask

The new pupil mask is $g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\operatorname{rect}\left(\frac{x^{\prime \prime}+1 \mathrm{~cm}}{1 \mathrm{~cm}}\right)+\operatorname{rect}\left(\frac{x^{\prime \prime}-1 \mathrm{~cm}}{1 \mathrm{~cm}}\right) \begin{aligned} & \text { so the field at the pupil plane to } \\ & \text { the right of the pupil mask is }\end{aligned}$ $g_{\mathrm{PP}+}\left(x^{\prime \prime}\right)=g_{\mathrm{PP}-}\left(x^{\prime \prime}\right) \times g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\frac{\sqrt{3}}{2 \pi} \delta\left(x^{\prime \prime}-1 \mathrm{~cm}\right)+\frac{\sqrt{3}}{2 \pi} \delta\left(x^{\prime \prime}+1 \mathrm{~cm}\right)$
Its Fourier transform is $G_{\mathrm{PP}+}(u)=\frac{\sqrt{3}}{2 \pi} \exp \{i 2 \pi u \times 1 \mathrm{~cm}\}+\frac{\sqrt{3}}{2 \pi} \exp \{-i 2 \pi u \times 1 \mathrm{~cm}\}$ so the output field and intensity are $g_{\text {out }}\left(x^{\prime}\right)=\frac{\sqrt{3}}{\pi} \cos \left(2 \pi \frac{x^{\prime}}{10 \mu \mathrm{~m}}\right) \quad I_{\mathrm{out}}\left(x^{\prime}\right)=\frac{3}{2 \pi^{2}}+\frac{3}{2 \pi^{2}} \cos \left(2 \pi \frac{2 x^{\prime}}{10 \mu \mathrm{~m}}\right)$

Example: band-pass filtering a binary amplitude grating

binary amplitude grating
 pupil mask

band-pass filtered binary amplitude grating
field: $1^{\text {st }}$ harmonic intensity: $2^{\text {nd }}$ harmonic (because of squaring) contrast $=1$

Example: band-pass filtering a binary amplitude grating with tilted illumination

Now consider the same optical system, again with the pupil mask consisting of two holes, each of diameter (aperture) 1 cm and centered at $\pm 1 \mathrm{~cm}$ from the optical axis, respectively. We illuminate this grating with an off-axis plane wave at angle $\theta_{0}=2.865^{\circ}$.
What is the intensity observed at the output (image) plane?
As you saw in a homework problem, the effect of rotating the input illumination is that the entire diffraction pattern from the grating rotates by the same amount; so in this case the $0^{\text {th }}$ order is propagating at angle θ_{0} off-axis, the $+1^{\text {st }}$ order at angle $\theta_{0}+\lambda / \Lambda$, etc.
Analytically, we find this by expressing the illuminating plane wave as $g_{\text {illum }}(x)=\exp \left\{i 2 \pi \frac{\sin \theta_{0}}{\lambda} x\right\}$
and the field after the input transparency $g_{\mathrm{t}}(x)$ as

$$
g_{\text {in }}(x)=g_{\text {illum }}(x) \times g_{\mathrm{t}}(x)=\exp \left\{i 2 \pi \frac{\sin \theta_{0}}{\lambda} x\right\} \times g_{\mathrm{t}}(x)
$$

Example: band-pass filtering a binary amplitude grating with tilted illumination

binary amplitude grating

pupil mask

The field to the left of the pupil mask is the Fourier transform of $g_{\text {in }}(x)$. Using the shift theorem,

$$
\begin{aligned}
G_{\mathrm{in}}(u) & =G_{\text {illum }}\left(u-u_{0}\right) \quad \text { where } \quad u_{0} \equiv \frac{\sin \theta_{0}}{\lambda} \approx 0.1 \mu \mathrm{~m}^{-1} \\
& =\alpha \sum_{q=-\infty}^{+\infty} \operatorname{sinc}(\alpha q) \delta\left(u-u_{0}-\frac{q}{\Lambda}\right) \Rightarrow \quad \begin{array}{l}
\text { all diffracted orders are } \\
\text { displaced by } 1 \mathrm{~cm}
\end{array} \\
g_{\mathrm{PP}-}\left(x^{\prime \prime}\right) & =G_{\text {in }}\left(\frac{x^{\prime \prime}}{\lambda f}\right)=\frac{1}{3} \sum_{q=-\infty}^{+\infty} \operatorname{sinc}\left(\frac{q}{3}\right) \delta\left(x^{\prime \prime}-1 \mathrm{~cm}-q \times 1 \mathrm{~cm}\right) .
\end{aligned}
$$

Example: band-pass filtering a binary amplitude grating with tilted illumination

binary amplitude grating

pupil mask

After passing through the pupil mask $g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\operatorname{rect}\left(\frac{x^{\prime \prime}+1 \mathrm{~cm}}{1 \mathrm{~cm}}\right)+\operatorname{rect}\left(\frac{x^{\prime \prime}-1 \mathrm{~cm}}{1 \mathrm{~cm}}\right)$, the field is
$g_{\mathrm{PP}+}\left(x^{\prime \prime}\right)=g_{\mathrm{PP}-}\left(x^{\prime \prime}\right) \times g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\frac{1}{3} \delta\left(x^{\prime \prime}-1 \mathrm{~cm}\right)+\frac{\sqrt{3}}{4 \pi} \delta\left(x^{\prime \prime}+1 \mathrm{~cm}\right) \Rightarrow$
$G_{\mathrm{PP}+}(u)=\frac{1}{3} \exp \{i 2 \pi u \times 1 \mathrm{~cm}\}+\frac{\sqrt{3}}{4 \pi} \exp \{-i 2 \pi u \times 1 \mathrm{~cm}\}$
so the output field and intensity are

$$
g_{\text {out }}\left(x^{\prime}\right)=G_{\mathrm{PP}+}\left(\frac{x^{\prime}}{\lambda f}\right)=\frac{1}{3} \exp \left\{i 2 \pi \frac{x^{\prime}}{10 \mu \mathrm{~m}}\right\}+\frac{\sqrt{3}}{4 \pi} \exp \left\{-i 2 \pi \frac{x^{\prime}}{10 \mu \mathrm{~m}}\right\}
$$

$$
I_{\text {out }}\left(x^{\prime}\right)=\left|g_{\text {out }}\left(x^{\prime}\right)\right|^{2}=\frac{1}{9}+\frac{3}{16 \pi^{2}}+\frac{1}{2 \sqrt{3} \pi} \cos \left(2 \pi \frac{2 x^{\prime}}{10 \mu \mathrm{~m}}\right)
$$

Example: band-pass filtering a binary amplitude grating with tilted illumination

binary amplitude grating

pupil mask

band-pass filtered binary amplitude grating with tilted illumination
field: $1^{\text {st }}$ harmonic intensity: $2^{\text {nd }}$ harmonic (because of squaring)

$$
\text { contrast } \approx 0.7
$$

Example: band-pass filtering a binary amplitude grating

Consider the same optical system yet again, with a new pupil mask consisting of two holes, each of diameter (aperture) 1 cm and centered further away from the axis at $\pm 2 \mathrm{~cm}$ from the optical axis, respectively.
What is the intensity observed at the output (image) plane?

Example: band-pass filtering a binary amplitude grating

binary amplitude grating

pupil mask

The new pupil mask is $g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\operatorname{rect}\left(\frac{x^{\prime \prime}+2 \mathrm{~cm}}{1 \mathrm{~cm}}\right)+\operatorname{rect}\left(\frac{x^{\prime \prime}-2 \mathrm{~cm}}{1 \mathrm{~cm}}\right)$
so the field at the pupil plane to the right of the pupil mask is
$g_{\mathrm{PP}+}\left(x^{\prime \prime}\right)=g_{\mathrm{PP}-}\left(x^{\prime \prime}\right) \times g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\frac{\sqrt{3}}{4 \pi} \delta\left(x^{\prime \prime}-2 \mathrm{~cm}\right)+\frac{\sqrt{3}}{4 \pi} \delta\left(x^{\prime \prime}+2 \mathrm{~cm}\right)$
Its Fourier transform is $G_{\mathrm{PP}+}(u)=\frac{\sqrt{3}}{4 \pi} \exp \{i 2 \pi u \times 2 \mathrm{~cm}\}+\frac{\sqrt{3}}{4 \pi} \exp \{-i 2 \pi u \times 2 \mathrm{~cm}\}$
so the output field and intensity are $\quad g_{\mathrm{out}}\left(x^{\prime}\right)=\frac{\sqrt{3}}{2 \pi} \cos \left(2 \pi \frac{x^{\prime}}{5 \mu \mathrm{~m}}\right) \quad I_{\mathrm{out}}\left(x^{\prime}\right)=\frac{3}{8 \pi^{2}}+\frac{3}{8 \pi^{2}} \cos \left(2 \pi \frac{4 x^{\prime}}{10 \mu \mathrm{~m}}\right)$

Example: band-pass filtering a binary amplitude grating

binary amplitude grating

pupil mask

band-pass filtered binary amplitude grating field: $2^{\text {nd }}$ harmonic intensity: $4^{\text {th }}$ harmonic (because of squaring) contrast = 1

Example: binary amplitude grating through phase pupil mask

Example: binary amplitude grating through phase pupil mask

binary amplitude grating

pupil mask

This pupil mask is $g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\left\{\begin{array}{rl}0, & \text { if }\left|x^{\prime \prime}\right|>1.5 \mathrm{~cm} \\ 1, & \text { if } 1.5 \mathrm{~cm} \leq\left|x^{\prime \prime}\right|<0.5 \mathrm{~cm} \\ \mathrm{e}^{i \phi}, & \text { if }\left|x^{\prime \prime}\right| \leq 0.5 \mathrm{~cm}\end{array} \quad=\operatorname{rect}\left(\frac{x^{\prime \prime}}{3 \mathrm{~cm}}\right)+\left(\mathrm{e}^{i \phi}-1\right) \operatorname{rect}\left(\frac{x^{\prime \prime}}{1 \mathrm{~cm}}\right)\right.$

$$
\left[\text { since } \mathrm{e}^{i \pi / 2}=i\right] \quad=\operatorname{rect}\left(\frac{x^{\prime \prime}}{3 \mathrm{~cm}}\right)+(i-1) \operatorname{rect}\left(\frac{x^{\prime \prime}}{1 \mathrm{~cm}}\right)
$$

so the field at the pupil plane to the right of the pupil mask is and the output field and intensity are

$$
g_{\text {out }}\left(x^{\prime}\right)=\frac{i}{3}+\frac{\sqrt{3}}{\pi} \cos \left(2 \pi \frac{x^{\prime}}{10 \mu \mathrm{~m}}\right) \quad I_{\text {out }}\left(x^{\prime}\right)=\left(\frac{1}{3}\right)^{2}+\frac{3}{2 \pi^{2}}+\frac{3}{2 \pi^{2}} \cos \left(2 \pi \frac{2 x^{\prime}}{10 \mu \mathrm{~m}}\right)
$$

compare with slide 14 (low-pass filter without phase mask)

Example: binary amplitude grating through phase pupil mask

pupil mask

Contrast $V=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}$
$=\frac{0.1871-0.1111}{0.1871+0.1111}$
$=0.2548$
compare with slide 14 (low-pass filter without phase mask)

binary amplitude grating filtered by pupil phase mask field: $1^{\text {st }}$ harmonic intensity: $2^{\text {nd }}$ harmonic (because of squaring)

The Point-Spread Function (PSF) of a low-pass filter

Now consider the same 4F system but replace the input transparency with an ideal point source, implemented as an opaque sheet with an infinitesimally small transparent hole and illuminated with a plane wave on axis (actually, any illumination will result in a point source in this case, according to Huygens.)
In Systems terminology, we are exciting this linear system with an impulse (delta-function); therefore, the response is known as Impulse Response.
In Optics terminology, we use instead the term Point-Spread Function (PSF) and we denote it as $h\left(x^{\prime}, y^{\prime}\right)$.
The sequence to compute the PSF of a $4 F$ system is:
\Rightarrow observe that the Fourier transform of the input transparency $\delta(x)$ is simply 1 everywhere at the pupil plane

- multiply 1 by the complex amplitude transmittance of the pupil mask
\Rightarrow Fourier transform the product and scale to the output plane coordinates $x^{\prime}=u \lambda f_{2}$.
\Rightarrow Therefore, the PSF is simply the Fourier transform of the pupil mask, scaled to the output coordinates $x^{\prime}=u \lambda f_{2}$

Example: PSF of a low-pass filter

The pupil mask is $g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\operatorname{rect}\left(\frac{x^{\prime \prime}}{3 \mathrm{~cm}}\right)$. If the input transparency is $\delta(\mathrm{x})$, the field at the pupil plane to the right of the pupil mask is $g_{\mathrm{PP}+}\left(x^{\prime \prime}\right)=g_{\mathrm{PP}-}\left(x^{\prime \prime}\right) \times g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=1 \times \operatorname{rect}\left(\frac{x^{\prime \prime}}{3 \mathrm{~cm}}\right) \Rightarrow G_{\mathrm{PP}+}(u)=(3 \mathrm{~cm}) \operatorname{sinc}(u \times 3 \mathrm{~cm})$.
The output field, i.e. the PSF is

$$
g_{\text {out }}\left(x^{\prime}\right) \equiv h\left(x^{\prime}\right)=G_{\mathrm{PM}}\left(\frac{x^{\prime}}{\lambda f}\right)=(3 \mathrm{~cm}) \operatorname{sinc}\left(\frac{x^{\prime} \times 3 \mathrm{~cm}}{0.5 \mu \mathrm{~m} \times 20 \mathrm{~cm}}\right)=(3 \mathrm{~cm}) \operatorname{sinc}\left(\frac{x^{\prime}}{3.33 \mu \mathrm{~m}}\right) .
$$

The scaling factor (3x) in the PSF ensures that the integral $\int\left|h\left(x^{\prime}\right)\right|^{2} \mathrm{~d} x$ equals the portion of the input energy

Example: PSF of a phase pupil filter
pupil mask

PSF

The pupil mask is $g_{\mathrm{PM}}\left(x^{\prime \prime}\right)=\operatorname{rect}\left(\frac{x^{\prime \prime}}{3 \mathrm{~cm}}\right)+(i-1) \operatorname{rect}\left(\frac{x^{\prime \prime}}{1 \mathrm{~cm}}\right)$.
The PSF is $\quad h\left(x^{\prime}\right)=G_{\mathrm{PM}}\left(\frac{x^{\prime}}{\lambda f}\right)=(3 \mathrm{~cm}) \operatorname{sinc}\left(\frac{x^{\prime}}{3.33 \mu \mathrm{~m}}\right)+(i-1) \times(1 \mathrm{~cm}) \operatorname{sinc}\left(\frac{x^{\prime}}{1 \mu \mathrm{~m}}\right)$;

$$
\begin{aligned}
\left|h\left(x^{\prime}\right)\right|^{2} & =\left[3 \operatorname{sinc}\left(\frac{x^{\prime}}{3.33}\right)-\operatorname{sinc}\left(\frac{x^{\prime}}{1}\right)\right]^{2}+\left[\operatorname{sinc}\left(\frac{x^{\prime}}{1}\right)\right]^{2} \\
\angle h\left(x^{\prime}\right) & =\arctan \frac{\operatorname{sinc}\left(x^{\prime}\right)}{3 \operatorname{sinc}\left(0.3 x^{\prime}\right)-\operatorname{sinc}\left(x^{\prime}\right)}
\end{aligned}
$$

Comparison: low-pass filter vs phase pupil mask filter

PSF: low-pass filter
 PSF: phase pupil mask filter

$$
\begin{aligned}
h\left(x^{\prime}\right) & =(3 \mathrm{~cm}) \operatorname{sinc}\left(\frac{x^{\prime}}{3.33 \mu \mathrm{~m}}\right) \\
\left|h\left(x^{\prime}\right)\right|^{2} & =9 \operatorname{sinc}^{2}\left(\frac{x^{\prime}}{3.33}\right) \\
\angle h\left(x^{\prime}\right) & = \begin{cases}0, & \text { if } \operatorname{sinc}\left(0.3 x^{\prime}\right)>0 \\
\pi, & \text { if } \operatorname{sinc}\left(0.3 x^{\prime}\right)<0\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
h\left(x^{\prime}\right) & =(3 \mathrm{~cm}) \operatorname{sinc}\left(\frac{x^{\prime}}{3.33 \mu \mathrm{~m}}\right)+(i-1) \times(1 \mathrm{~cm}) \operatorname{sinc}\left(\frac{x^{\prime}}{1 \mu \mathrm{~m}}\right) \\
\left|h\left(x^{\prime}\right)\right|^{2} & =\left[3 \operatorname{sinc}\left(\frac{x^{\prime}}{3.33}\right)-\operatorname{sinc}\left(\frac{x^{\prime}}{1}\right)\right]^{2}+\left[\operatorname{sinc}\left(\frac{x^{\prime}}{1}\right)\right]^{2} \\
\angle h\left(x^{\prime}\right) & =\arctan \frac{\operatorname{sinc}\left(x^{\prime}\right)}{3 \operatorname{sinc}\left(0.3 x^{\prime}\right)-\operatorname{sinc}\left(x^{\prime}\right)} .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

