1. (a) Solution: Without correction, the focus is before the retina, leading to blurred vision:

With correction, the image forms (focused) on the retina:

(b) Solution: Draw again the ray-tracing diagram for the object at ∞ :

Draw the imaging system formed by EL above, with object $=$ the virtual image found by CL.

Angular magnification $M_{A}=-\frac{450}{50}=-9$

$$
\Rightarrow \alpha_{2}=-9 \cdot \alpha_{1}=-\frac{9 x}{435}=-\frac{x}{48 \frac{1}{3}}
$$

From \triangle ICA (see diagram on previous page),

$$
\begin{aligned}
\frac{x}{\mathrm{EFL}} & =\tan \alpha_{2}=\alpha_{2} \quad(\text { paraxial approximation }) \\
& =\frac{x}{48 \frac{1}{3}} \Rightarrow \mathrm{EFL}=48 \frac{1}{3}
\end{aligned}
$$

(c) 1st method: Using the 2nd PP and EFL

2nd method: Using the imaging condition

$$
x_{0}=\alpha f_{c}=-435 \alpha
$$

The lateral magnification of EL's imaging system (with the virtual image formed by CL as the object and real image formed on the retina) is given by:

$$
\begin{aligned}
M_{L} & =-\frac{50}{450}=-\frac{1}{9} \Rightarrow x_{i}=M_{L} x_{0}=-\frac{1}{9} \cdot(-435 \alpha) \\
& =\frac{435}{9} \alpha=48 \frac{1}{3} \alpha \Rightarrow \text { Image is } \underline{\text { erect. }}
\end{aligned}
$$

(d) Solution: Use the eye's pupil as the object and flip the optical system for proper ray-tracing.

The myopic person's eyes appear smaller and erect.
2. (a) Solution: First consider an on-axis point at the object plane.

Clearly, S1 limits the angle of acceptance, so S1 is the Aperture Stop. Now consider the chief ray from an off-axis point object.

$$
\mathrm{FOV}=\frac{a_{2} \frac{f_{1}}{f_{2}}}{f_{1}}=\frac{a_{2}}{f_{2}}
$$

Clearly, S2 limits the chief ray if the point object elevation off-axis becomes sufficiently large, so S 2 is the Field Stop.
(b) Solution:

Entrance Pupil: image S1 through L1 $\quad \Rightarrow \infty$ to the left
Exit Pupil: \quad image S1 through L2 $\quad \Rightarrow \infty$ to the right
Entrance Window: image S2 through L2, L1 \Rightarrow object plane
Exit Window:
\Rightarrow collocated with S 2
So the completely annotated system is:

(c) Solution: Numerical Aperture \& Field of View

From Figure 1, the angle of acceptance is NA $=\frac{a_{1}}{f_{1}}$
From Figure 2, S2 is imaged through L2, L1 onto the object plane. The lateral magnification is found as follows:

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

