2.71

Quiz 1

50 min

8:05-8:55am EST

9:05-9:55pm SST

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2.71 Optics

QUIZ 1

distances shown in mm (not to scale)
$\mathbf{C L}=$ corrective lens; $\mathbf{E L}=$ eye lens; $\mathbf{E P}=$ eye pupil; $\mathbf{R}=$ retina

1. Eye correction The schematic above is a grossly simplified model of a person's eye who suffers from myopia. The unaccommodated focal length of EL is $f_{\mathrm{e}}=$ 45 mm , whereas the distance from EL to R is longer, as shown. The purpose of this problem is to study the corrective action of CL for objects at infinity. We model both CL and EL as thin lenses.
a) $\mathbf{(2 0 \%)}$) First consider an on-axis object, i.e. $\alpha=0$. Calculate CL's focal length f_{c} such that the combination of CL and EL focus properly on R.
b) $\mathbf{(1 5 \%)}$ Locate the $2^{\text {nd }}$ Principal Plane and the Effective Focal Length of the combination of CL and EL.
c) (15\%) Now consider an off-axis object, i.e. $\alpha \neq 0$. Which elevation on R is the image formed at?
d) $\mathbf{(2 0 \%})$ Does this person's EP appear smaller or larger than its natural size when viewed through CL by an observer? By how much?

2. Aperture and field stops in a telescope with finite conjugates For the telescope configuration shown above, where lenses L1 and L2 have focal lengths f_{1}, f_{2}, respectively, the object plane and two stops S 1 and S 2 of half-sizes a_{1}, a_{2}, respectively, are at the locations shown,
a) $\mathbf{(1 0 \%)}$) identify the Aperture Stop and the Field Stop, and trace the Chief Ray and Marginal Ray for a sample off-axis point object of your choice;
b) $\mathbf{(1 0 \%)}$) locate the Entrance Pupil, Exit Pupil, Entrance Window, and Exit Window; and
c) $\mathbf{(1 0 \%)}$ calculate the Numerical Aperture and Field of View.

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

