1. Consider the following system.

(a) If we position an on-axis point source at the center of the object plane (front focal plane of L1), a collimated ray bundle will emerge to the right of L1 and its diameter is set by S 1 ; therefore, S 1 is the aperture stop (A.S.). Similarly, $\underline{\mathrm{S} 2}$ limits the lateral extent of an imaged object (consider an off-axis point source) and thus, it's our field stop (F.S.).
(b) The entrance pupil is the image of the A.S. by the preceding optical components. To find its location we use the imaging condition,

$$
\begin{array}{rlrl}
\frac{1}{S_{o}}+\frac{1}{S_{i}} & =\frac{1}{f_{1}} & & \Rightarrow \\
S_{o} & =\frac{2 f_{1}}{3} & & \Rightarrow \quad S_{i}=\frac{S_{o} f_{1}}{S_{o}-f_{1}}=\frac{2 f_{1}^{2} / 3}{f_{1}\left(\frac{2}{3}-1\right)} \\
\end{array}
$$

So the entrance pupil is located at $\underline{2 f_{1}}$ to the right of L1. To find its radius, we compute the lateral magnification,

$$
M_{L}=-\frac{S_{i}}{S_{o}}=3 \rightarrow r_{\mathrm{EnP}}=3 a_{1}
$$

For the exit pupil (Ex.P.),

$$
\begin{gathered}
S_{o}=\frac{f_{1}}{3}+f_{2}, \quad S_{i}=\frac{\left(\frac{f_{1}}{3}+f_{2}\right) f_{2}}{\frac{f_{1}}{3}+f_{2}-f_{2}}=f_{2}+3 \frac{f_{2}^{2}}{f_{1}}(\text { to the right of L2) } \\
M_{L}=\frac{-\frac{3 f_{2}}{f_{1}}\left(\frac{f_{1}}{3}+f_{2}\right)}{\left(\frac{f_{1}}{3}+f_{2}\right)}=-3 \frac{f_{2}}{f_{1}}(\text { inverted }) \quad \rightarrow \quad r_{\operatorname{ExP}}=3 \frac{f_{2}}{f_{1}} a_{1}
\end{gathered}
$$

- The exit window is the same as S2.
- The entrance window is the image of S 2 through the preceding optical elements (i.e. combination of L1 and L2). It is f_{1} to the left of L1.
(c) Solution:

The numerical aperture is: $\tan \alpha \approx \alpha \approx \sin \alpha \approx \mathrm{NA} \approx \frac{a_{1}}{f_{1}}$

The field of view is: $\mathrm{FOV}=2 \beta=\frac{2 X_{s}}{3 f_{1}}=\frac{2}{3} \frac{f_{1} a_{2}}{f_{1} f_{2}}=\frac{2}{3} \frac{a_{2}}{f_{2}}$

(d) The location of S1 limits the FOV because of the requirement for the C.R. to go through the center of the aperture stop (A.S.). It can be seen that the least restrictive A.S. location is at the Fourier plane $\left(f_{1}\right.$ to the right of $\mathrm{L} 1 \Longleftrightarrow f_{2}$ to the left of L2).
2. Solution:

(a) Focal length f should be satisfied with $\frac{1}{S_{o}}+\frac{1}{S_{1}}=\frac{1}{f}$

$$
\frac{1}{12}+\frac{1}{8}=\frac{5}{24} \rightarrow f=\frac{24}{5} \mathrm{~cm}
$$

(b) Lateral magnification $M_{T}=-\frac{S_{i}}{S_{o}}=-\frac{8}{12}=-\frac{2}{3}$
(c) Solution:
$\mathrm{NA} \approx \sin \theta \approx \tan \theta=0.1=\frac{R}{S_{o}}$
$R=1.2 \mathrm{~cm} \rightarrow$ Diameter of the lens: 2.4 cm

(d) $\lambda=1 \mu \mathrm{~m}$

Rayleigh resolution $=1.22 \frac{\lambda}{(\mathrm{NA})}=(1.22) \frac{1 \mu \mathrm{~m}}{(0.1)}=12.2 \mu \mathrm{~m}$
(e) To achieve $\left|M_{T}\right|=1, S_{o}=S_{i}=2 f \rightarrow S_{o}=S_{i}=\frac{48}{5} \mathrm{~cm}$

3. Michelson Interferometer

When the mirror \#2 is tilted by θ, the reflected light is rotated by 2θ.

Unfolding the optical paths, we have this situation:

At the observation plane,

$$
\begin{aligned}
& E_{1}(x)=e^{i \frac{2 \pi}{\lambda}\left(z_{0}+2 z_{1}+z_{c}\right)} \\
& E_{2}(x)=e^{i \frac{2 \pi}{\lambda}\left(z_{0}+z_{2}\right)} e^{i \frac{2 \pi}{\lambda}\left\{\cos 2 \theta\left(z_{2}+z_{c}\right)+\sin 2 \theta x\right\}}
\end{aligned}
$$

$$
\begin{aligned}
\Delta \phi & =z \neq z_{2}+\cos 2 \theta\left(z_{2}+z_{c}\right)+\sin 2 \theta x-\not \approx-2 z_{1}-z_{c} \\
& =z_{2}(1+\cos 2 \theta)-2 z_{1}+z_{c}(\cos 2 \theta-1)+\sin 2 \theta x \\
& =2 z_{2} \cos ^{2} \theta-2 z_{1}-2 z_{c} \sin ^{2} \theta+\sin 2 \theta x \\
& =2\left(\cos ^{2} \theta z_{2}-\sin ^{2} \theta z_{c}-z_{1}\right)+\sin 2 \theta x
\end{aligned}
$$

Note that if $\theta=0, \Delta \phi=2\left(z_{2}-z_{1}\right)$, which only depends on z_{1} and z_{2}.
Neglecting attenuation due to reflection, we obtain the field as $E(x)=E_{1}(x)+E_{2}(x)$. The intensity of the interference is

$$
\begin{aligned}
I(x) & =|E(x)|^{2}=\left|E_{1}(x)\right|^{2}+\left|E_{2}(x)\right|^{2}+2 \operatorname{Re}\left\{E_{1}^{*} E_{2}\right\} \\
& =1+1+2 \cos \left(\frac{2 \pi}{\lambda} \Delta \phi\right) \\
& =2\left\{1+\cos \left(\frac{2 \pi}{\lambda}\left[\sin 2 \theta x+2\left(\cos ^{2} \theta z_{2}-\sin ^{2} \theta z_{c}-z_{1}\right)\right]\right)\right\}
\end{aligned}
$$

The normalized intensity is:

\therefore The period of the fringe is dependent on θ. If θ increases, the period decreases (finer fringes). Due to the phase shift by $\frac{2}{\lambda}\left(\cos ^{2} \theta z_{2}-\sin ^{2} \theta z_{c}-z_{1}\right)$, the whole fringe shifts as z_{1} and z_{2} change.
4. Consider the 4 -f system shown below,

(a) The pupil mask can be implemented by placing two pinholes (small apertures), one centered with respect to the optical axis and the second one at 1 cm off-axis. The 2nd pinhole is phase delayed by a piece of glass of thickness t, where

$$
\phi=\pi=\frac{2 \pi}{\lambda} t(1.5-1) \Rightarrow t=\lambda
$$

(b) The input transparency is

$$
g_{\text {in }}=g_{t} \cdot \underline{g_{\text {illummination }}} \underset{=}{=} \alpha \sum_{q=-\infty}^{\infty} \operatorname{sinc}(\alpha q) e^{i 2 \pi \frac{q x}{\Lambda}}
$$

At the Fourier plane,

$$
\begin{aligned}
G_{\text {in }} & =\left.\alpha \sum_{q=-\infty}^{\infty} \operatorname{sinc}(\alpha q) \delta\left(u-\frac{q}{\Lambda}\right)\right|_{u=\frac{x^{\prime \prime}}{\lambda f}} \\
G_{\text {in }}\left(x^{\prime \prime}\right) & =\frac{1}{2} \sum_{q=-\infty}^{\infty} \operatorname{sinc}\left(\frac{q}{2}\right) \delta\left(x^{\prime \prime}-q\left(\frac{\lambda f}{\Lambda}\right)\right), \quad \frac{\lambda f}{\Lambda}=\frac{0.5 \times 10^{-4} \cdot 10}{5 \times 10^{-4}}=1
\end{aligned}
$$

After the pupil mask, only the 0 th and +1 orders pass. The +1 order gets phase delayed by $e^{i \pi}=-1$.

$$
\begin{aligned}
G_{\text {out }}\left(x^{\prime \prime}\right) & =\frac{1}{2} \delta\left(x^{\prime \prime}\right)-\frac{1}{2} \operatorname{sinc}\left(\frac{1}{2}\right) \delta\left(x^{\prime \prime}-1\right) \\
& =\frac{1}{2} \delta\left(x^{\prime \prime}\right)-\frac{1}{\pi} \delta\left(x^{\prime \prime}-1\right) \\
g_{\text {out }}\left(u^{\prime}\right) & =\frac{1}{2}-\left.\frac{1}{\pi} e^{-i 2 \pi u^{\prime}}\right|_{u^{\prime}=\frac{x^{\prime}}{\lambda f}} \\
I_{\text {out }} & =\left|\frac{1}{2}-\frac{1}{\pi} e^{-i \frac{2 \pi x^{\prime}}{\lambda f}}\right|^{2}=\frac{1}{4}+\frac{1}{\pi^{2}}-\frac{1}{\pi} \cos \left(\frac{2 \pi}{\lambda} \frac{x^{\prime}}{f}\right)
\end{aligned}
$$

The contrast is $v=0.906=\frac{\frac{1}{\pi}}{\frac{1}{4}+\frac{1}{\pi^{2}}}=\frac{4 \pi}{4+\pi^{2}}$.
5. (a) To compute the OTF, we first need the ATF:

$$
\begin{aligned}
& u_{1}=\frac{x^{\prime \prime}}{\lambda f}=\frac{1 \mathrm{~cm}}{0.5 \mu \mathrm{~m} \times 10 \mathrm{~cm}}=0.2 \mu \mathrm{~m}^{-1}=200 \mathrm{~mm}^{-1} \\
& \delta u=\frac{\delta x^{\prime \prime}}{\lambda f} \approx \frac{\overbrace{0.2 \mathrm{~cm}}^{\text {est. }}}{0.5 \mu \mathrm{~m} \times 10 \mathrm{~cm}}=0.025 \mu \mathrm{~m}^{-1}=25 \mathrm{~mm}^{-2}
\end{aligned}
$$

$$
\begin{aligned}
H(u) & =H(u) \otimes H(u) \quad \text { (autocorrelation) } \\
& =\int\left[\operatorname{rect}\left(\frac{u^{\prime}}{\delta u}\right)-\operatorname{rect}\left(\frac{u^{\prime}-u_{1}}{\delta u}\right)\right]\left[\operatorname{rect}\left(\frac{u^{\prime}-u}{\delta u}\right)-\operatorname{rect}\left(\frac{u^{\prime}-u_{1}-u}{\delta u}\right)\right] d u^{\prime}
\end{aligned}
$$

$$
=\int \operatorname{rect}\left(\frac{u^{\prime}}{\delta u}\right) \operatorname{rect}\left(\frac{u^{\prime}-u}{\delta u}\right) d u^{\prime} \rightarrow
$$

$$
\frac{\prod_{\delta u}^{1}}{\hat{\prod}} \notin \underset{\frac{\prod_{\delta u}}{\hat{u}}}{\substack{2 \delta u}}
$$

$$
-\int \operatorname{rect}\left(\frac{u^{\prime}}{\delta u}\right)-\operatorname{rect}\left(\frac{u^{\prime}-u_{1}-u}{\delta u}\right) d u^{\prime} \rightarrow
$$

$-\int \operatorname{rect}\left(\frac{u^{\prime}-u_{1}}{\delta u}\right) \operatorname{rect}\left(\frac{u^{\prime}-u}{\delta u}\right) d u^{\prime} \rightarrow$

So the resultant OTF and MTF are (after normalization):

(b) Only the DC and the ± 1 st harmonics at $u= \pm 200 \mathrm{~mm}^{-1}(\operatorname{period}=5 \mu \mathrm{~m})$, i.e.

$$
\begin{aligned}
I\left(x^{\prime}\right) & =\frac{1}{2}-\frac{1}{2} \times \frac{1}{\pi} \times 2 \cos \left(\frac{2 \pi x^{\prime}}{5 \mu \mathrm{~m}}\right) \\
& =\text { DC term }-H\left(200 \mathrm{~mm}^{-2}\right) \times 1 \text { st harmonic } \times 2 \cos \left(\frac{2 \pi x^{\prime}}{5 \mu \mathrm{~m}}\right)
\end{aligned}
$$

(c) Solution:

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

