1.

$$
\begin{gathered}
\left|\vec{k}_{1}\right|=\left|\vec{k}_{2}\right|=\frac{2 \pi}{\lambda} \\
\vec{k}_{1}=\frac{2 \pi}{\lambda}\left(\sin 30^{\circ} \hat{x}+\cos 30^{\circ} \hat{z}\right)=\frac{2 \pi}{\lambda}\left(\frac{1}{2} \hat{x}+\frac{\sqrt{3}}{2} \hat{z}\right) \\
\vec{k}_{2}=\frac{2 \pi}{\lambda}\left(\cos 45^{\circ} \hat{x}+\sin 45^{\circ} \sin 30^{\circ} \hat{y}+\sin 45^{\circ} \cos 30^{\circ} \hat{z}\right) \\
=\frac{2 \pi}{\lambda}\left(\frac{\sqrt{2}}{2} \hat{x}+\frac{\sqrt{2}}{4} \hat{y}+\frac{\sqrt{6}}{4} \hat{z}\right)
\end{gathered}
$$

Assuming $\left|E_{1}\right|=\left|E_{2}\right|=1$,

$$
\begin{aligned}
& \left.\begin{array}{rl}
E_{1}(x, y, z) & =e^{i \vec{k}_{1} \cdot \vec{r}}=e^{i \frac{2 \pi}{\lambda}\left(\frac{x}{2}+\frac{\sqrt{3}}{2} z\right)} \equiv e^{i \phi_{1}} \\
E_{2}(x, y, z) & =e^{i \vec{k}_{2} \cdot \vec{r}}=e^{i \frac{2 \pi}{\lambda}\left(\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{4} y+\frac{\sqrt{6}}{4} z\right)} \equiv e^{i \phi_{2}}
\end{array}\right\} \text { interference pattern I } \\
& \quad I=\left|E_{1}+E_{2}\right|^{2}=\left|E_{1}\right|^{2}+\left|E_{2}\right|^{2}+2\left|E_{1}\right|\left|E_{2}\right| \cos \left(\phi_{1}-\phi_{2}\right) \\
& = \\
& =2\left[1+\cos \left(\phi_{1}-\phi_{2}\right)\right]
\end{aligned}
$$

(a) In the xy-plane, $z=0$

$$
\left.\begin{array}{l}
\phi_{1}=\frac{2 \pi}{\lambda}(x / 2) \\
\phi_{2}=\frac{2 \pi}{\lambda}\left(\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{4} y\right)
\end{array}\right\} \phi_{1}-\phi_{2}=\frac{2 \pi}{\lambda}\left[\left(\frac{1}{2}-\frac{\sqrt{2}}{2}\right) x-\frac{\sqrt{2}}{4} y\right]=\Delta \phi
$$

$I=2[1+\cos \Delta \phi]$ so the profile is a sinusoidal profile. The maxima are along the lines whose equation is:

$$
\begin{gathered}
\frac{2 \pi}{\lambda}\left[\left(\frac{1}{2}-\frac{\sqrt{2}}{2}\right) x-\frac{\sqrt{2}}{4} y\right]=2 m \pi, \text { where } m \in \mathbb{Z} \\
\frac{1-\sqrt{2}}{2} x-\frac{\sqrt{2}}{4} y=m \lambda
\end{gathered}
$$

(b) For the plane $z=\lambda$

$$
\left.\begin{array}{l}
\phi_{1}=\frac{2 \pi}{\lambda}\left(\frac{1}{2} x+\frac{\sqrt{3}}{2} \lambda\right) \\
\phi_{2}=\frac{2 \pi}{\lambda}\left(\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{4} y+\frac{\sqrt{6}}{4} \lambda\right)
\end{array}\right\} \Delta \phi=\frac{2 \pi}{\lambda}\left[\frac{1-\sqrt{2}}{2} x+\frac{\sqrt{2}}{4} y+\frac{2 \sqrt{3}-\sqrt{6}}{4} \lambda\right]
$$

$I=2[1+\cos \Delta \phi]$, so the interference pattern is still a sinusoid (i.e. a set of linear fringes). The maxima occur when $\Delta \phi=2 \pi m, m \in \mathbb{Z}$. The equation of the fringe lines are:

$$
\frac{2 \pi}{\lambda}\left(\frac{1-\sqrt{2}}{2} x+\frac{\sqrt{2}}{4} y+\frac{2 \sqrt{3}-\sqrt{6}}{4} \lambda\right)=2 \pi m, m \in \mathbb{Z}
$$

$$
\frac{1-\sqrt{2}}{2} x+\frac{\sqrt{2}}{4} y=\left(m-\frac{2 \sqrt{3}-\sqrt{6}}{4}\right) \lambda
$$

Note that the slopes are the same as 1a, but the maxima are shifted.
(c) In the yz-plane, $x=0$

$$
\left.\begin{array}{l}
\phi_{1}=\frac{2 \pi}{\lambda}\left(\frac{\sqrt{3}}{2} z\right) \\
\phi_{2}=\frac{2 \pi}{\lambda}\left(\frac{\sqrt{2}}{4} y+\frac{\sqrt{6}}{4} z\right)
\end{array}\right\} \Delta \phi=\frac{2 \pi}{\lambda}\left[-\frac{\sqrt{2}}{4} y+\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{6}}{4}\right) z\right]
$$

We also observe a set of fringes along the lines where $\Delta \phi=2 m \pi$, i.e. $-\frac{\sqrt{2}}{4} y+$ $\frac{2 \sqrt{3}-\sqrt{6}}{4} z=m \lambda, m \in \mathbb{Z}$
2.

$$
\begin{aligned}
& \text { Plane wave: } E_{\mathrm{pl}}=\left|E_{\mathrm{pl}}\right| e^{i \frac{2 \pi}{\lambda} z} \\
& \text { Spherical wave: } E_{\mathrm{sp}}=\frac{\left|E_{\mathrm{sp}}\right|}{\alpha z} e^{i \frac{2 \pi}{\lambda} z} e^{i \pi \frac{\left(x^{2}+y^{2}\right)}{\lambda z}}
\end{aligned}
$$

(a) At $z=1000 \lambda$, assuming the amplitudes of the two waves are equal:

$$
\begin{aligned}
& E_{\mathrm{pl}}=e^{i \phi_{\mathrm{pl}}} \text { where } \phi_{\mathrm{pl}}=\frac{2 \pi}{\lambda} z \\
& E_{\mathrm{sp}}=e^{i \phi_{\mathrm{sp}}} \text { where } \phi_{\mathrm{sp}}=\frac{2 \pi}{\lambda} z+\frac{\pi}{\lambda z}\left(x^{2}+y^{2}\right) \\
& \Delta \phi=\phi_{\mathrm{sp}}-\phi_{\mathrm{pl}}=\frac{\pi}{\lambda z}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

We have bright fringes where $\Delta \phi=2 \pi m, m=0,1,2 \ldots$, so $\frac{x^{2}+y^{2}}{2 z}=m \lambda$.
At $z=1000 \lambda \rightarrow x^{2}+y^{2}=2000 \lambda^{2} m, m=0,1,2,3 \ldots$, which is a set of concentric rings of radii $R=\lambda \sqrt{2000 m}, m=0,1,2,3 \ldots$
(b) At $z=2000 \lambda$, the amplitude of the spherical wave decreases by a factor of $1 / 2$ (energy conservation).

$$
\left.\begin{array}{l}
E_{\mathrm{pl}}=e^{i \phi_{\mathrm{pl}}} \\
E_{\mathrm{sp}}=\frac{1}{2} e^{i \phi_{\mathrm{sp}}}
\end{array}\right\} I=1+\left(\frac{1}{2}\right)^{2}+2(1)\left(\frac{1}{2}\right) \cos \Delta \phi=\frac{5}{4}+\cos \Delta \phi
$$

The maxima are given by $\Delta \phi=2 \pi m$.

$$
\frac{x^{2}+y^{2}}{2 z}=m \lambda \Rightarrow x^{2}+y^{2}=4000 \lambda^{2} m
$$

Therefore the maxima are concentric circles of radii $R=20 \lambda \sqrt{10 m}, m=0,1,2, \ldots$
(c) Observations:
i. The interference pattern is a set of concentric circles whose radii are given by

$$
R_{m}=\sqrt{2 z \lambda m}
$$

ii. The radius of the first fringe $\left(R_{1}\right)$ increases with both λ and z
iii. At a certain distance z, the spacing between the fringes decreases as we go radially outwards.

$$
\Delta R_{m}=\sqrt{2 z \lambda}(\sqrt{m}-\sqrt{m-1})
$$

(d) If we insert a lens in branch 1 of a Michelson interferometer, the lens focuses the plane wave to a point at its back focal plane.

After reflecting off the mirror, the lens is effectively imaging a point source at a distance $(d-f)+d=2 d-f$; thus it forms a point source image at S_{i}, where

$$
\begin{aligned}
\frac{1}{S_{i}} & =\frac{1}{f}-\frac{1}{S_{0}}=\frac{1}{f}-\frac{1}{2 d-f}=\frac{2(d-f)}{f(2 d-f)} \\
S_{i} & =\frac{f(2 d-f)}{2(d-f)}
\end{aligned}
$$

If $d=f$, i.e. $S_{i}=\infty$, we get a plane wave back and the output is a uniform intensity, because we would be observing the interference of two on-axis plane waves.
If $d \neq f$, we get circular fringes due to the interference of a plane wave and a spherical wave.
3. The general off-axis plane wave propagates at θ with respect to the z axis.

The off-axis plane wave equation is:

$$
E_{\mathrm{pl}}=\left|E_{\mathrm{pl}}\right| e^{i \frac{2 \pi}{\lambda}(x \sin \theta+z \cos \theta)}
$$

The equation of the spherical wave is:

$$
E_{\mathrm{sp}}=\frac{\left|E_{\mathrm{sp}}\right|}{\alpha z} e^{i \frac{2 \pi}{\lambda} z} e^{i \frac{\pi}{\lambda z}\left(x^{2}+y^{2}\right)}
$$

(a) Assuming the amplitudes are equal at $z=1000 \lambda, I=2\left|E_{\mathrm{pl}}\right|^{2}(1+\cos \Delta \phi)$, where $\Delta \phi=\phi_{\mathrm{sp}}-\phi_{\mathrm{pl}}$:

$$
\left.\begin{array}{l}
\phi_{\mathrm{sp}}=\frac{2 \pi}{\lambda} z+\frac{\pi}{\lambda z}\left(x^{2}+y^{2}\right) \\
\phi_{\mathrm{pl}}=\frac{2 \pi}{\lambda}(x \sin \theta+z \cos \theta)
\end{array}\right\} \Delta \phi=\frac{\pi}{\lambda z} x^{2}-\frac{2 \pi}{\lambda} \sin \theta x+\frac{\pi}{\lambda z} y^{2}+\frac{2 \pi}{\lambda} z(1-\cos \theta)
$$

Bright fringes occur when $\Delta \phi=2 \pi m$:

$$
\begin{align*}
& \frac{1}{2 z} x^{2}-(\sin \theta) x+\frac{1}{2 z} y^{2}=m \lambda-z(1-\cos \theta) \\
& x^{2}-2 z \sin \theta x+z^{2} \sin ^{2} \theta+y^{2}=\underbrace{2 z[m \lambda-z(1-\cos \theta)]+z^{2} \sin ^{2} \theta}_{R_{m}{ }^{2}} \cdots \tag{Eq.A}\\
& (x-z \sin \theta)^{2}+y^{2}=R_{m}{ }^{2}
\end{align*}
$$

(b) At $z=2000 \lambda,\left|E_{\mathrm{sp}}\right|=\frac{1}{2}\left|E_{\mathrm{pl}}\right|$

$$
I=\left|E_{\mathrm{pl}}\right|^{2}\left(\frac{5}{4}+\cos \Delta \phi\right)
$$

The fringes are still given by equation A where $z=2000 \lambda$. This gives a bigger shift along the x -axis and lower contrast in the fringes as well as larger spacing of peaks.
4. We sketch the system as follows:

The $m^{\text {th }}$ plane wave is at an angle $\theta_{m}=\theta_{0}+m \Delta \theta$

$$
E_{m}=e^{i \frac{2 \pi}{\lambda}\left[\cos \theta_{m} z+\sin \theta_{m} x\right]}
$$

Assuming small angles (paraxial approximation), $\theta_{m} \ll 1$

$$
\begin{aligned}
& \cos \theta_{m} \approx 1, \sin \theta_{m} \approx \theta_{m}=\theta_{0}+m \Delta \theta \\
& E_{m} \approx e^{i \frac{2 \pi}{\lambda}\left(z+\theta_{m} x\right)}=e^{i \frac{2 \pi}{\lambda}\left(z+\theta_{0} x+m \Delta \theta x\right)}
\end{aligned}
$$

Adding all the plane waves,

$$
\begin{gathered}
E_{T}=\sum_{m=0}^{N-1} E_{m} \\
=\sum_{m=0}^{N-1} e^{i \frac{2 \pi}{\lambda}\left(z+\theta_{0} x+m \Delta \theta x\right)} \\
=e^{i \frac{2 \pi}{\lambda} z} e^{i \frac{2 \pi}{\lambda} \theta_{0} x} \sum_{\sum_{m=0}^{N-1}\left(e^{i \frac{2 \pi}{\lambda} x \Delta \theta}\right)^{m}}^{\text {Geometric series: } \theta_{0}=1, r=e^{i \frac{2 \pi}{\lambda} x \Delta \theta}} \\
=E_{T}=e^{i \frac{2 \pi}{\lambda} z} e^{i \frac{2 \pi}{\lambda} \theta_{0} x} \cdot \frac{1-e^{i\left(\frac{2 \pi}{\lambda} N x \Delta \theta\right)}}{1-e^{i\left(\frac{2 \pi}{\lambda} x \Delta \theta\right)}}=e^{i \frac{2 \pi}{\lambda} z} e^{i \frac{2 \pi}{\lambda} \theta_{0} x} \cdot \frac{e^{i \frac{\phi_{1}}{2}}}{e^{i \frac{\phi_{2}}{2}}} \cdot \frac{e^{-i \frac{\phi_{1}}{2}}-e^{i \frac{\phi_{1}}{2}}}{e^{-i \frac{\phi_{2}}{2}}-e^{i \frac{\phi_{2}}{2}}} \cdot \frac{1-e^{i \phi_{1}}}{1-e^{i \phi_{2}}} \\
\left|E_{T}\right|^{2}=\left|\frac{e^{-i \frac{\phi_{1}}{2}}-e^{i \frac{\phi_{1}}{2}}}{e^{-i \frac{\phi_{2}}{2}}-e^{i \frac{\phi_{2}}{2}}}\right|^{2}=\left(\frac{2 i \sin \left(\frac{\phi_{1}}{2}\right)}{2 i \sin \left(\frac{\phi_{2}}{2}\right)}\right)^{2}=\frac{\sin ^{2}\left(\frac{\phi_{1}}{2}\right)}{\sin ^{2}\left(\frac{\phi_{2}}{2}\right)}
\end{gathered}
$$

5. Forward propagating plane wave: $\vec{k}_{1}=\frac{2 \pi}{\lambda} \hat{z}$

Backward propagating plane wave: $\vec{k}_{2}=-\frac{2 \pi}{\lambda} \hat{z}$

$$
\begin{aligned}
E_{1} & =e^{i\left(\frac{2 \pi}{\lambda} z-\omega t\right)}, \quad E_{2}=e^{i\left(-\frac{2 \pi}{\lambda} z-\omega t\right)} \\
I & =2(1+\cos \Delta \phi), \text { where } \Delta \phi=\phi_{1}-\phi_{2}=\frac{4 \pi}{\lambda} z \\
\therefore I & =2\left[1+\cos \left(\frac{4 \pi}{\lambda} z\right)\right]=4 \cos ^{2}\left(\frac{2 \pi}{\lambda} z\right)
\end{aligned}
$$

Note that although we did not ignore the time dependence of each wave (ωt), the interference wave is independent of time, thus the term "standing wave."

MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

