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2.71 Optics Problem Set 5 Solutions
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λ 2 4 4


Assuming E1 = E2 = 1,
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I = |E1 + E2|2 = |E1|2 + |E2|2 + 2|E1||E2| cos(φ1 − φ2) 

= 2[1 + cos(φ1 − φ2)] 

(a) In the xy-plane, z = 0 
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I = 2[1 + cos Δφ] so the profile is a sinusoidal profile. The maxima are along the 
lines whose equation is: 
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(b) For the plane z = λ � � ⎫ � � 
= x + λφ1
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I = 2[1+ cos Δφ], so the interference pattern is still a sinusoid (i.e. a set of linear 
fringes). The maxima occur when Δφ = 2πm, m ∈ Z. The equation of the fringe 
lines are: � � 
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Note that the slopes are the same as 1a, but the maxima are shifted. 

(c) In the yz-plane, x = 0 
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(a) At z = 1000λ, assuming the amplitudes of the two waves are equal: 

2π 
Epl = e iφpl where φpl = z 
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Esp = e iφsp where φsp = z + (x 2 + y 2)
λ λz 

Δφ = φsp − φpl = 
π 

(x 2 + y 2)
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We have bright fringes where Δφ = 2πm, m = 0, 1, 2 . . ., so x2

2
+
z
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At z = 1000λ x2 + y2 = 2000λ2m, m = 0, 1, 2, 3 . . ., which is a set of concentric

rings of radii R

→ 
= λ
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2000m, m = 0, 1, 2, 3 . . .


(b) At z = 2000λ, the amplitude of the spherical wave decreases by a factor of 1/2 
(energy conservation). � � �2 � � 
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The maxima are given by Δφ = 2πm.
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Therefore the maxima are concentric circles of radii R = 20λ
√

10m, m = 0, 1, 2, . . . 

(c) Observations: 

i. The interference pattern is a set of concentric circles whose radii are given by 

Rm = 
√

2zλm 
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ii. The radius of the first fringe (R1) increases with both λ and z 
iii. At a certain distance z, the spacing between the fringes decreases as we go 

radially outwards.
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(d) If we insert a lens in branch 1 of a Michelson interferometer, the lens focuses the 
plane wave to a point at its back focal plane. 

After reflecting off the mirror, the lens is effectively imaging a point source at a 
distance (d − f) + d = 2d − f ; thus it forms a point source image at Si, where 
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If d = f , i.e. Si = ∞, we get a plane wave back and the output is a uniform 
intensity, because we would be observing the interference of two on-axis plane 
waves. 
If d = f, we get circular fringes due to the interference of a plane wave and a 
spherical wave. 

3. The general off-axis plane wave propagates at θ with respect to the z axis. 

The off-axis plane wave equation is:
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The equation of the spherical wave is: 
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(a) Assuming the amplitudes are equal at z = 1000λ, I = 2|Epl|2(1 + cos Δφ), where 
Δφ = φsp − φpl: 

= 2π z + π (x2 + y2) π 2π π 2πφsp 
2
λ
π 

λz Δφ = x 2 sin θx + y 2 + z(1 − cos θ)
φpl = 

λ (x sin θ + z cos θ) λz 
− 

λ λz λ 

Bright fringes occur when Δφ = 2πm: 

1 1 
x 2 − (sin θ)x + y 2 = mλ − z(1 − cos θ)

2z 2z

x 2 − 2z sin θx + z 2 sin2 θ + y 2 = 2z[mλ − z(1 − cos θ)] + z 2 sin2 θ . . . (Eq. A)
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(b) At z = 2000λ, |Esp| = 
2
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The fringes are still given by equation A where z = 2000λ. This gives a bigger 
shift along the x-axis and lower contrast in the fringes as well as larger spacing of 
peaks. 

4. We sketch the system as follows: 

The mth plane wave is at an angle θm = θ0 + mΔθ 

Em = e i 
2π [cos θmz+sin θmx]
λ 

Assuming small angles (paraxial approximation), θm � 1 

cos θm ≈ 1, sin θm ≈ θm = θ0 + mΔθ 

Em ≈ e i 
2π (z+θmx) i 2π (z+θ0x+mΔθx)
λ = e λ 
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Adding all the plane waves,
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5. Forward propagating plane wave: �k1 = 2
λ
π ẑ

Backward propagating plane wave: �k2 = −2
λ
π ẑ
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Note that although we did not ignore the time dependence of each wave (ωt), the 
interference wave is independent of time, thus the term “standing wave.” 
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