1. (a) For a diffraction limited system the slopes of the OTF are constant.

$$
\begin{aligned}
&\left.m\right|_{u=25 \mathrm{~mm}^{-1}}=68.75 \%=0.6875 \\
& \Rightarrow_{\text {in }}=\frac{1}{2} \delta(u)+\frac{1}{4} \delta\left(u-\frac{1}{\Lambda}\right)+\frac{1}{4} \delta\left(u+\frac{1}{\Lambda}\right) \\
& \hat{I}_{\text {out }}=\hat{I}_{\text {in }} \cdot \mathrm{OTF}=\frac{1}{2} \delta(u)+\frac{a}{4} \delta\left(u-\frac{1}{\Lambda}\right)+\frac{a}{4} \delta\left(u+\frac{1}{\Lambda}\right) \\
& I_{\text {out }}\left(x^{\prime}\right)=\frac{1}{2}\left[1+a \cos \left(2 \pi \frac{x^{\prime}}{\Lambda}\right)\right] \\
&\left.m\right|_{u=\frac{1}{\Lambda}}=\frac{\left(\frac{1}{2}+\frac{a}{2}\right)-\left(\frac{1}{2}-\frac{a}{2}\right)}{\left(\frac{1}{2}+\frac{a}{2}\right)+\left(\frac{1}{2}-\frac{a}{2}\right)}=a
\end{aligned}
$$

$\therefore$ the contrast is the normalized value of the OTF at that frequency. Using similar triangles, if $\left.m\right|_{u=25 \mathrm{~mm}^{-1}}=0.6875=(1-0.3125)$, then

$$
\left.m\right|_{u=50 \mathrm{~mm}^{-1}}=(1-0.6250)=0.3750=37.5 \%
$$

(b) The cut-off frequency for incoherent imaging is $u_{0}=80 \mathrm{~mm}^{-1}$. The cut-off frequency of the coherently illuminated system is $40 \mathrm{~mm}^{-1}$. Hence $50 \mathrm{~mm}^{-1}$ frequencies do NOT go through if it is coherently illuminated.
2.

$$
I(x)=\frac{1}{2}\left[1+\frac{1}{2} \cos \left(2 \pi \frac{x}{40 \mu \mathrm{~m}}\right)+\frac{1}{2} \cos \left(2 \pi \frac{3 x}{40 \mu \mathrm{~m}}\right)\right]
$$

(a) The contrast $m$ is given by:

$$
m=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

At the input, $m=\frac{1-0}{1+0}=1$.
(b) The Fourier transform of $I(x)$ is:

$$
\tilde{I}(u)=\frac{1}{8}\left[\delta\left(u-\frac{1}{40}\right)+\delta\left(u+\frac{1}{40}\right)+\delta\left(u-\frac{3}{40}\right)+\delta\left(u+\frac{3}{40}\right)\right]+\frac{1}{2} \delta(u)
$$

The Fourier transform of the output intensity is:

$$
\begin{aligned}
\tilde{I}_{0}(u) & =(\mathrm{MTF}) \cdot \tilde{I}(u) \\
& =\frac{1}{2} \delta(u)+(0.25) \frac{1}{8}\left[\delta\left(u-\frac{1}{40}\right)+\delta\left(u+\frac{1}{40}\right)\right] \\
& =\frac{1}{2} \delta(u)+\frac{1}{16}\left[\frac{1}{2} \delta\left(u-\frac{1}{40}\right)+\frac{1}{2} \delta\left(u+\frac{1}{40}\right)\right] \\
I_{0}\left(x^{\prime}\right) & =\frac{1}{2}+\frac{1}{16} \cos \left(2 \pi \frac{x^{\prime}}{40}\right) \\
m_{\text {out }} & =\frac{\left(\frac{1}{2}+\frac{1}{16}\right)-\left(\frac{1}{2}-\frac{1}{16}\right)}{\left(\frac{1}{2}+\frac{1}{16}\right)+\left(\frac{1}{2}-\frac{1}{16}\right)}=\frac{1}{8}=0.125
\end{aligned}
$$


(c) The incoherent transfer function is an autocorrelation of the coherent transfer function. The coherent transfer function in this case is probably a triangle function with half the cut-off frequency.

3.

$$
h(x)=\operatorname{sinc}^{2}\left(\frac{x}{b}\right)
$$

(a) Incoherent iPSF

$$
\tilde{h}(x)=|h(x)|^{2}=\operatorname{sinc}^{4}\left(\frac{x}{b}\right)
$$

(b) $\mathrm{MTF}=|\tilde{H}(u)|$

$$
\begin{aligned}
\tilde{H}(u) & =\mathcal{F}\{\tilde{h}(x)\}=\mathcal{F}\left\{\operatorname{sinc}^{2}\left(\frac{x}{b}\right) \cdot \operatorname{sinc}^{2}\left(\frac{x}{b}\right)\right\} \\
& =\mathcal{F}\left\{\operatorname{sinc}^{2}\left(\frac{x}{b}\right)\right\} \otimes \mathcal{F}\left\{\operatorname{sinc}^{2}\left(\frac{x}{b}\right)\right\} \\
& =b \Lambda(b u) \otimes b \Lambda(b u)
\end{aligned}
$$




Solutions to Problem Set \#8
Due Wednesday, May 13, 2009

## Problem 4:

a) Consider the system shown in Figure 1. At the input we place a sinusoidal amplitude grating of perfect contrast,

$$
\begin{equation*}
g_{t}(x)=\frac{1}{2}\left[1+\cos \left(2 \pi \frac{x}{\Lambda}\right)\right], \tag{1}
\end{equation*}
$$

where $\lambda=0.5 \mu \mathrm{~m}, f_{1}=f_{2}=f=20 \mathrm{~cm}, \Lambda=10 \mu \mathrm{~m}$, and the two apertures at the pupil plane have a diameter of 1 cm and are separated by 1 cm from the optical axis.

We begin by computing the input intensity (assuming uniform intensity illumination),

$$
\begin{align*}
I_{i n} & =\left|g_{t}(x)\right|^{2}=\frac{1}{4}\left[1+\cos \left(2 \pi \frac{x}{\Lambda}\right)\right]^{2}  \tag{2}\\
& =\frac{1}{4}\left[1+\cos ^{2}\left(2 \pi \frac{x}{\Lambda}\right)+2 \cos \left(2 \pi \frac{x}{\Lambda}\right)\right] \\
& =\frac{1}{4}\left[1+\frac{1}{2}+\frac{1}{2} \cos \left(4 \pi \frac{x}{\Lambda}\right)+2 \cos \left(2 \pi \frac{x}{\Lambda}\right)\right] \\
& =\frac{3}{8}+\frac{1}{8} \cos \left(4 \pi \frac{x}{\Lambda}\right)+\frac{1}{2} \cos \left(2 \pi \frac{x}{\Lambda}\right)
\end{align*}
$$

where we used the following trigonometric identity,

$$
\begin{equation*}
\cos ^{2}(\alpha)=\frac{1}{2}+\frac{1}{2} \cos (2 \alpha) \tag{3}
\end{equation*}
$$

Now we compute the frequency spectra of the input signal,


Figure 1: Optical system for problem 4.


Figure 2: Input signal spectrum.


Figure 3: Graphical calculation of OTF.

$$
\begin{align*}
G_{i n} & =\digamma\left\{I_{\text {in }}\right\}  \tag{4}\\
& =\frac{3}{8} \delta(u)+\frac{1}{4}\left[\delta\left(u-\frac{1}{\Lambda}\right)+\delta\left(u+\frac{1}{\Lambda}\right)\right]+\frac{1}{16}\left[\delta\left(u-\frac{2}{\Lambda}\right)+\delta\left(u+\frac{2}{\Lambda}\right)\right]
\end{align*}
$$

which can be represented graphically as shown in Figure 2.
The ATF of the system is,

$$
\begin{equation*}
H=\operatorname{rect}\left(\frac{x^{\prime \prime}-x_{o}}{d}\right)+\operatorname{rect}\left(\frac{x^{\prime \prime}+x_{o}}{d}\right), \tag{5}
\end{equation*}
$$

where $x_{o}$ is the lateral shift ( 1 cm ) and $d$ is the aperture diamter (also 1 cm ). We compute the OTF of the optical system graphically as shown in Figure 3. The OTF is the normalized cross-correlation of the ATF of the system.

To compute the spectrum of the output signal we multiply the OTF by the input spectra,

$$
\begin{align*}
G_{\text {out }} & =\hat{H} G_{\text {in }}  \tag{6}\\
& =\frac{3}{8} \delta(u)+\frac{1}{32}\left[\delta\left(u-\frac{2}{\Lambda}\right)+\delta\left(u+\frac{2}{\Lambda}\right)\right]_{u=\frac{x^{\prime \prime}}{\lambda f}} .
\end{align*}
$$

The output intensity is,

$$
\begin{align*}
I_{\text {out }} & =\digamma\left\{G_{\text {out }}\right\}  \tag{7}\\
& =\frac{3}{8}+\frac{1}{16}\left[\frac{e^{-i 2 \pi \frac{2 x^{\prime \prime}}{\Lambda}}+e^{i 2 \pi \frac{2 x^{\prime \prime}}{\Lambda}}}{2}\right] \\
& =\frac{3}{8}+\frac{1}{16} \cos \left(2 \pi \frac{2 x^{\prime \prime}}{\Lambda}\right)
\end{align*}
$$

(b) The constrast or visibility is given by,

$$
\begin{equation*}
V=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }} \tag{8}
\end{equation*}
$$

For the output intensity of equation 7 , the contrast is $V=0.167$.
(c) Finally we compare our results with the coherent case where the spectrum of the input field is,

$$
\begin{equation*}
G_{\text {in }}=\mathcal{F}\left\{g_{t}(x)\right\}=\frac{1}{2} \delta(u)+\frac{1}{4}\left[\delta\left(u-\frac{1}{\Lambda}\right)+\delta\left(u+\frac{1}{\Lambda}\right)\right] . \tag{9}
\end{equation*}
$$

The ATF of the system acts as a pass-band filter as shown in Figure 4 and only allows the first diffraction order to pass,

$$
\begin{equation*}
G_{\text {out }}=\frac{1}{4}\left[\delta\left(u-\frac{1}{\Lambda}\right)+\delta\left(u+\frac{1}{\Lambda}\right)\right]_{u=\frac{x^{\prime \prime}}{\lambda f}} . \tag{10}
\end{equation*}
$$

The output field is,

$$
\begin{align*}
g_{\text {out }} & =\digamma\left\{G_{\text {out }}\right\}  \tag{11}\\
& =\frac{1}{2}\left[\frac{e^{-i 2 \pi \frac{x^{\prime}}{\Lambda}}+e^{i 2 \pi \frac{x^{\prime}}{\Lambda}}}{2}\right] \\
& =\frac{1}{2} \cos \left(2 \pi \frac{x^{\prime}}{\Lambda}\right)
\end{align*}
$$



Figure 4: Band-pass filter - coherent system.
and the output intensity is,

$$
\begin{align*}
I_{\text {out }} & =\left|g_{\text {out }}\right|^{2}  \tag{12}\\
& =\frac{1}{4} \cos ^{2}\left(2 \pi \frac{x^{\prime}}{\Lambda}\right) \\
& =\frac{1}{4}\left[\frac{1}{2}+\frac{1}{2} \cos \left(2 \pi \frac{2 x^{\prime}}{\Lambda}\right)\right] \\
& =\frac{1}{8}+\frac{1}{8} \cos \left(2 \pi \frac{2 x^{\prime}}{\Lambda}\right)
\end{align*}
$$

For the coherent case we note the the contrast is $V=1$.

## Problem 5:

a) Consider the system shown in Figure 1. The input transparency is a binary amplitude grating with the following parameters: $m=1$, duty cycle $=\alpha=1 / 3, \Lambda=10 \mu \mathrm{~m}$. The operating wavelength is $\lambda=0.5 \mu \mathrm{~m}$, and the focal lengths are $f_{1}=f_{2}=f=20 \mathrm{~cm}$. At the Fourier plane, the pupil mask has two apertures with a diameter of 1 cm shifted 2 cm from the optical axis.

We begin by expressing the binary amplitude grating in a Fourier Series,

$$
\begin{equation*}
g_{t}(x)=\alpha \sum_{q=-\infty}^{\infty} \operatorname{sinc}(\alpha q) e^{i 2 \pi q \frac{x}{\Lambda}} \tag{1}
\end{equation*}
$$

Since equation 1 has a binary amplitude dependence that goes from 0 to 1 , the intensity is also binary, $I_{i n}=|g(t)|^{2}$. The spectrum of the input signal is given by,

$$
\begin{align*}
G_{i n}(u) & =\left[\alpha \sum_{q=-\infty}^{\infty} \operatorname{sinc}(\alpha q) \delta\left(u-\frac{q}{\Lambda}\right)\right]_{u=\frac{x^{\prime \prime}}{\lambda f}}  \tag{2}\\
& \rightarrow G_{i n}\left(x^{\prime \prime}\right)=\alpha \sum_{q=-\infty}^{\infty} \operatorname{sinc}(\alpha q) \delta\left(x^{\prime \prime}-\frac{\lambda f q}{\Lambda}\right)
\end{align*}
$$

and is shown in Figure 2.
The OTF, $\hat{H}$, of the optical system is computed in the same way as in problem 4 and it is shown in Figure 3.

The output field spectrum is given by,

$$
\begin{align*}
G_{\text {out }} & =\hat{H} G_{\text {in }}  \tag{3}\\
& =\frac{1}{3} \delta\left(x^{\prime \prime}\right)-\frac{\sqrt{3}}{\pi 16}\left[\delta\left(x^{\prime \prime}-\frac{\lambda f 4}{\Lambda}\right)+\delta\left(x^{\prime \prime}+\frac{\lambda f 4}{\Lambda}\right)\right]
\end{align*}
$$

The output intensity is,


Figure 1: Optical system for problem 5.


Figure 2: Input signal spectrum.


Figure 3: System's OTF.

$$
\begin{align*}
I_{\text {out }} & =\digamma\left\{G_{\text {out }}\right\}  \tag{4}\\
& =\frac{1}{3}-\frac{\sqrt{3}}{\pi 8}\left[\frac{e^{-i 2 \pi \frac{x^{\prime} 4}{\Lambda}}+e^{i 2 \pi \frac{x^{\prime} 4}{\Lambda}}}{2}\right] \\
& =\frac{1}{3}-\frac{\sqrt{3}}{\pi 8} \cos \left(2 \pi \frac{x^{\prime} 4}{\Lambda}\right)
\end{align*}
$$

(b) The resulting contrast is,

$$
\begin{equation*}
V=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=0.2067 \tag{5}
\end{equation*}
$$

(c) Comparying with the results from Lecture 19, p. 24 , for the coherent case, the output intensity is,

$$
I_{\text {out }}=\frac{3}{8 \pi^{2}}+\frac{3}{8 \pi^{2}} \cos \left(2 \pi \frac{x^{\prime} 4}{\Lambda}\right)
$$

and the contrast $V=1$.

## Problem 6:

Consider the optical system shown in Figure 1. The input transparency is a binary amplitude grating with the same parameters as in problem 5. The operating wavelength is $\lambda=0.5 \mu \mathrm{~m}$, and the focal lengths are $f_{1}=f_{2}=f=20 \mathrm{~cm}$. The pupil mask is given by,

$$
\begin{align*}
g_{P M}\left(x^{\prime \prime}\right) & =\left[\operatorname{rect}\left(\frac{x^{\prime \prime}}{a}\right)+(i-1) \operatorname{rect}\left(\frac{x^{\prime \prime}}{b}\right)\right]_{x^{\prime \prime}=u \lambda f}  \tag{1}\\
& \rightarrow H(u)=g_{P M}(u) \\
& =\operatorname{rect}\left(\frac{u}{\alpha}\right)+(i-1) \operatorname{rect}\left(\frac{u}{\beta}\right)
\end{align*}
$$

where $\alpha=a / \lambda f, \beta=b / \lambda f, a=3 \mathrm{~cm}$ and $b=1 \mathrm{~cm}$. The magnitude and phase of the pupil mask are shown in Figure 2.

We now compute the coherent PSF,

$$
\begin{align*}
h(x) & =\mathcal{F}^{-1}\{H(u)\}  \tag{2}\\
& =\alpha \operatorname{sinc}(\alpha x)+(i-1) \beta \operatorname{sinc}(\beta x) \\
& =\alpha \operatorname{sinc}(\alpha x)-\beta \operatorname{sinc}(\beta x)+i \beta \operatorname{sinc}(\beta x)
\end{align*}
$$

The incoherent PSF is given by,

$$
\begin{align*}
\hat{h}(x)= & |h(x)|^{2}=h \cdot h^{*}  \tag{3}\\
= & {[\alpha \operatorname{sinc}(\alpha x)-\beta \operatorname{sinc}(\beta x)]^{2}+\beta^{2} \operatorname{sinc}^{2}(\beta x) } \\
& \alpha^{2} \operatorname{sinc}^{2}(\alpha x)+2 \beta^{2} \operatorname{sinc}^{2}(\beta x)-2 \alpha \beta \operatorname{sinc}(\alpha x) \operatorname{sinc}(\beta x) .
\end{align*}
$$

The OTF of the system is found by computing the Fourier transform of equation 3,

$$
\begin{equation*}
\hat{H}(u)=\alpha \operatorname{triag}\left(\frac{u}{\alpha}\right)+2 \beta \operatorname{triag}\left(\frac{u}{\beta}\right)-2\left[\operatorname{rect}\left(\frac{u}{\alpha}\right) * \operatorname{rect}\left(\frac{u}{\beta}\right)\right], \tag{4}
\end{equation*}
$$

and is shown in Figure 3.


Figure 1: Optical system for problem 6.


Figure 2: Magnitud and phase of the pupil mask.


Figure 3: OTF and spectrum of the input signal.

From problem 5, the spectrum of the input signal is,

$$
\begin{equation*}
G_{i n}(u)=\alpha \sum_{q=-\infty}^{\infty} \operatorname{sinc}(\alpha q) \delta\left(u-\frac{q}{\Lambda}\right) . \tag{5}
\end{equation*}
$$

To compute the spectrum of the output signal we multiply equations 5 and 6 ,

$$
\begin{equation*}
G_{\text {out }}(u)=\frac{1}{3} \delta(u)+\frac{\sqrt{3}}{12 \pi}\left[\delta\left(u-\frac{2}{\Lambda}\right)+\delta\left(u+\frac{2}{\Lambda}\right)\right] . \tag{6}
\end{equation*}
$$

The output intensity is given by,

$$
\begin{align*}
I_{\text {out }} & =\mathcal{F}\left\{G_{\text {out }}\right\}  \tag{7}\\
& =\frac{1}{3}+\frac{\sqrt{3}}{6 \pi}\left[\frac{e^{-i 2 \pi \frac{x^{\prime} 2}{\Lambda}}+e^{i 2 \pi \frac{x^{\prime} 2}{\Lambda}}}{2}\right] \\
& =\frac{1}{3}+\frac{\sqrt{3}}{6 \pi} \cos \left(2 \pi \frac{x^{\prime} 2}{\Lambda}\right)
\end{align*}
$$

(b) The resulting contrast is,

$$
\begin{equation*}
V=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=0.2757 \tag{8}
\end{equation*}
$$

(c) Finally, we compare our results to those from the coherent case as discussed in Lecture 19, p. 27, where the output intensity is,

$$
\begin{equation*}
I_{\text {out }}\left(x^{\prime}\right)=\left(\frac{1}{3}\right)^{2}+\frac{3}{2 \pi^{2}}+\frac{3}{2 \pi^{2}} \cos \left(2 \pi \frac{x^{\prime} 2}{\Lambda}\right) \tag{9}
\end{equation*}
$$

and the contrast is $V=0.2548$.

## Problem 7:

In this problem we are required to show that the intensity at the Fourier plane of the system shown in Figure 1 is proportional to the autocorrelation of the input field, $g_{\text {in }}=g_{\text {illum }}(x) \cdot g_{t}(x)$. From the supplement to lecture 18, we can see that the optical field at the Fourier plane for the special case of $z=f$ is,

$$
\begin{equation*}
g_{F}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\frac{e^{i 2 \pi \frac{2 f}{\lambda}}}{i \lambda f} G\left(\frac{x^{\prime \prime}}{\lambda f}, \frac{y^{\prime \prime}}{\lambda f}\right) \tag{1}
\end{equation*}
$$

The intensity at that plane is,

$$
\begin{equation*}
I_{F}=g_{F} \cdot g_{F}^{*} \propto G \cdot G^{*}, \tag{2}
\end{equation*}
$$

which is proportional to the autocorrelation of the input field as they are related by a Fourier transform,

$$
\begin{equation*}
\Im\left\{g_{i n} \otimes g_{i n}\right\}=G \cdot G^{*} \tag{3}
\end{equation*}
$$



Figure 1: Fourier transforming lens.

MIT OpenCourseWare
http://ocw.mit.edu

### 2.71 / 2.710 Optics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

