
The Sampling Process 
 Geophysical processes are continuous processes in time, but are not sampled 
continuously and never for infinitely long time spans.  Processes are almost always (1) sampled 
at discrete points in time (usually equally spaced) for (2) a finite length of time, and (3) recorded 
in digital form.  Digital recording has the advantage of high resolution and ease in the 
subsequent analysis by the use of a computer. Understanding how to sample the environment 
properly so the statistics of the process can be accurately estimated involves knowledge of:  

(1) The discrete sampling process.  This includes the effects of quantization in time or the 
sample interval, δt, and the quantization of the parameter being measured, δx. 

(2) The response of our instrument to the environment.  
(3) Gating (sampling for only a finite length of time).   

The relationship between the discrete, digitized sample set (what we have to work with) and the 
original continuous function is covered by certain sampling theorems.   

The Sampler - Define the sampler, III, (Shah) as 

                             ∞ 
                    III(t) = ∑ δ(t-n)   Eq 47 
                            n=-∞ 

which is an infinite set of unit spaced impulses or delta functions.  By suitable limiting process to 
take care of sharp peaks and infinite length, Bracewell shows that 

               1. III(t) ⊃ III(f)    Eq 48 

Then some properties of the sampler, (given ‘n’ as an integer and ‘a’ as a scalar) are 

               2. III(t+n) = III(t) 

               3. III(t-1/2) = III(t+1/2) 

               4. III(-t) = III(t) 

                                  ∞ 
               5. III(at) = 1/|a| ∑ δ(t-n/a)  Eq 50 
                                 n=-∞ 

                   ⌠ n+½ 
               6.  ⎮ III(t)dt = 1 
                   ⌡ n-½ 

                                  ∞ 
               7. III(t) * x(t) = ∑ x(t-n)   Eq 51 
                                 n=-∞ 

This says that the convolution of x(t) with the sampler produces an infinite sum of shifted 
versions of x(t). The general results of this is a complex mess.  If, however, x(t) is gated so that it 
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is time limited to |t| < 1/2, and x(t)=0 otherwise, the convolution produces an infinite replication 
of x(t) in each interval t. 

                                ∞ 
               8. III(t)·x(t) = ∑ x(n) δ(t-n)  Eq 52 
                               n=-∞ 

This is the sampling operation.  The continuous function x(t) is changed into a set of pulses.  The 
product function is determined by its values at t=n, and can be represented by a series of 
numbers, xt, as the discrete representation of x(t). 

                    xt = x(t)·III(t) 

 
Here we have made assumptions that we have equally spaced samples.  Note that time series of 

monthly means are not equally spaced samples and may cause some difficulties in analysis. 

If                  xt = x(t)·III(t) 

and we define X(f) as the Fourier transform of our observed series, 

                    x(t) ⊃ X(f), 

and X’(f) as the transform of our sampled series, 

                    xt ⊃ X’(f) 
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and we had 

                    III(t) ⊃ III(f) 

So if we have,  

                    xt = x(t)·III(t) 

then by the convolution theorem 

                    X’(f) = X(f) * III(f) 

where X’(f) is the estimate of the true transform, X(f), resulting from our sampling of the 
continuous geophysical process.  By property number 7 above, it is obvious that this could be a 
mess.  However, if X(f) were band limited to |f| < 1⁄2, (that is X(f) = 0 for |f| > 1⁄2) then the 
transform of the sampled function, X’(f) is a replicated version of the true transform X(f).  
These replications are called aliases. 

 

Where the solid line is the true transform, X(f), and the dashed curves are the replicated versions 
of X(f).  Now since the true transform is bandlimited to frequencies of magnitude less than 1⁄2, 
we can reconstruct the original, continuous function by applying an ideal low pass filter, the gate 
function, Π. 

                    X(f) = X’(f)·Π(f)  Eq 53 

Note that the function Π is also sometimes called the “boxcar filter” because applying it as a 
filter in the time domain, we just average all the points within the boxcar as the filtered value.  
We can then reconstruct the original continuous series, x(t), by transforming Equation 53 back to 
the time domain, 
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                    x(t) = xt * sinc(t). 

Thus, the sinc function is the interpolator that enables one to reconstruct the continuous series 
from the discrete time series.  It is obvious that if X(f) is not band limited to |f| < 1⁄2, we get 
energy from the alias peaks falling in the interval |f| < 1⁄2, and we can not design an ideal filter to 
reconstruct the original series from the estimated transform.  

 
Our sampled transform is the sum of the solid curves and is shown dashed.  There is high 
frequency energy which is not eliminated properly by the gate filter.  This means that we have 
not sampled the function properly.  Expressing it another way, we can interpolate between the 
sampled points in our discrete time series, xt, to reconstruct the original time series, x(t), if we 
have at least two samples per cycle of the highest frequency present in x(t), and this sinc function 
is the ideal interpolation function.   
 
Scaling - The sampling theorem for equally spaced data is given for δt = 1.  However, if δt = a, 
then  

               ∑ δ(t-an) = ∑ δ{a(t/a - n)} 
               n           n 

                         = 1/|a| ∑ δ(t/a - n) 
                                 n 

                         = 1/|a| III(t/a) 

and  
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               1/|a| III(t/a) ⊃ 1/|a| III(t/a) 

                              ⊃ 1/|a| a III(af) 

                              ⊃ III(af) 

Now our sampling is 

               xt = 1/|a| x(t)·III(t/a)   Eq 54 

and transforming 

               X’(f) = X(f) * III(af)   Eq 55 

where III(af) = 1/|a| δ(f - n/a).  So we see that X(f) is replicated and multiplied by 1/a.  If x(t) is 
bandlimited to |f| < 1/(2 a), we can recover X(t) from xt by the low pass filter aΠ(f) 

               X(f) = a Π(af)·X’(f)   Eq 56 

and transforming 

               x(t) = Sinc(t/a) * xt   Eq 57 

This convolution will give x(t) for any t from the sampled function, xt, so the sinc is an 
interpolation function.   

SAMPLING THEOREM - If x(t) is a band limited function, the discrete sample function xt can 
be used to reconstruct the original series x(t) if we have sampled at twice the highest frequency 
present. 

The sampling theorem works the other way also.  If X(f) is sampled at equally spaced frequency 
points, then the function can be reconstructed from the sample frequency points provided x(t) is 
time limited.  This says that a time limited function can be specified by a set of frequency 
numbers Xf and that X(f) can be found by interpolation as above.   

Therefore, if x(t) is bandlimited and time limited, then xt and Xf fully represent x(t) and X(f) if 
x(t) is sampled at least twice the highest frequency present.   
 

Nyquist frequency (folding frequency)

The sampling theorem deals with ideal filters and not the real world, but it does act as a useful 
guide and certainly sets a lower limit on sampling.   

Nyquist Frequency  It is obvious that the frequency f = 1⁄2 is of great interest.  When the sample 
interval, δt, = a, the replications occur at intervals of af.  This frequency af = 1⁄2 is called the 
Nyquist frequency, fN

              fN = 1/(2δt)     Eq 58 
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which is also sometimes called the folding frequency.  This means that frequencies higher than 

fN will appear folded into lower frequencies about fN, this confusion of frequencies is called 

aliasing.  For example, if we sample a sine wave at an interval slightly longer than the period, we 

get a signal which looks like a sine wave of lower frequency.  This improper sampling process 

produces an erroneous signal which is called an alias.  The process of improper sampling and 

creation of these aliases or aliased peaks is called aliasing.

Improper sampling of the above sine wave results in a sine wave of much lower frequency.  We

have improperly sampled the environment, and as a result, our statistical description of the 

frequency of the predominate energy will be wrong.  The power density spectrum (calculated 

from the Fourier transform)  of the improperly sampled time series will show a spectral peak at 

this lower frequency due to aliasing.  In frequency space, this aliasing or folding can be 

illustrated by 

              | 

              | 

      True    | 

     Spectrum |                       | 

              |                       | 

              |                       | 

              +----------------+---------------- 

                              fN      f 

              | 

              |       Aliased 

              |        Peak 

      Aliased | 

     Spectrum |         |             | 

              |         |             | 

              |         |             | 

              +----------------+---------------- 

                              fN      f 
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The frequency at which the aliased signal appears can be easily calculated.  It is just (fN - (f - fN)) 
= (2fN - f).  So if δt = 1⁄2 hour, fN = 1 cph.  Assuming that there is a signal with frequency f = 1.2 
cph, then the aliased peak will occur at 0.8 cph, as if it were folded about fN. 

To further study the number of samples required, let f0 be the highest frequency present in x(t), 
then  

                 n = (2fN)/f0 = (f0δt)-1

is the number of samples of the highest frequency of interest.  The sampling theory says that n = 
2.  However, this is for infinite series, and not practically obtainable.  On the other hand, some 
practical rules of thumb are 

1. Bendat & Piersol - n = 3 or 4 under good conditions  

2. Tukey - If T (length of record) is large, then n is slightly larger than 2.  If T is about 10/f0, 
then n =  4 or 5, and if T is about 100/f0, then n = 3 or 4.  

3. Hanning - If T is small then n = 7. 
 

*** Assignment #5 *** 

A.  Examine the sampling theorem by properly and improperly sampling a time series.  
Create a sine wave time series as in earlier examples.  Sample it properly and plot out a 
time series and power spectrum to show that this is so and that the energy is at the 
frequency that you selected.   

B.  Now improperly sample the sine wave by making the sample interval nearly the period 
(e.g. select a sample interval of 28 points with a 32 point period.  Create a time series and 
spectrum and determine if the energy is at the frequency you expect.   

 
Discrete Statistical Descriptions

 Now that we have defined our sampling process, and have a finite, discrete series xt, we 
can redefine our lower moment statistics discussed above.  Again take our series xt as extending 
from t = 1 to m, at intervals of δt.  We can look at each of these as being estimates of the actual 
statistics, and we are looking at the statistics through a filter.  As the number of terms in the 
series becomes large, then the filter effects are reduced, and in the limit they disappear. 

Mean - This just becomes the sum over all the terms, normalized by the number of terms  

                               m 
                       µ = 1/m ∑ xi   Eq 59 
                              i=1 

Variance - this becomes 

                               m 
                      σ² = 1/m ∑ [xi - µ]²  Eq 60 
                              i=1 
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Covariance - The covariance is 

                            m 
                  R τ = 1/m ∑ [xi - µ][xi-τ - µ] x
                           i=1 

                                           Eq 61 

                             m 
                   R τ = 1/m ∑ [xi - µ][yi-τ - µ] xy
                            i=1 

Correlation -  The correlation is again the normalized covariance 

                          ρxτ = Rxτ/σ² 

                                             Eq 62 

                          ρxyτ = Rxyτ/ √Rx(0)Ry(0) 
 
The discrete Fourier transform  The definition of Fourier transforms given in Equations 19 
and 20 deal with idealizations and not the real world (i.e. they are designed for infinite series 
lengths with infinitely small sample intervals).  In reality one usually computes the Fourier 
transform by the Fast Fourier Transform algorithm (FFT) on a digital computer.  The advantage 
of the FFT is the speed of computation, the disadvantage to those working in the real world is 
that the length of the series must be a power of 2.  When the length is not an even power of two, 
then the data is often shortened, or overlapped.  This requires extra processing.  I use a mixture 
of the slow Fourier transform, the Fast Fourier Transform and a prime factor transform to allow 
the best analysis of the full length of time series collected.  In this class we will use a power of 
two and use the FFT in MATLAB as the best demonstration tool.   

 For a Fourier series, which is a complete representation of the continuous function x(t) 
when summed to infinity, to be summed over a finite number of frequencies results in looking at 
the true spectrum through a filter.  If xp is the result of the partial sum, then 

                       1  ⌠ π    Sin[(2p+1)(t-τ)/2] 
              xp(t) = --- ⎮ x(t) ------------------ dτ Eq 62 
                      2π  ⌡ -π      Sin[(t-τ)/2] 

where we only sum to p instead of infinity.  As p → ∞, the kernel just goes to δ(t-τ) an so 
xp.approaches the true series x(t).  

The FFT over the finite, discrete sampled series xt then looks like  

                    1  n    ⎡ Sin[(2n+1)(p/2)   1       ⎤ 
               S’t= −  ∑ xr ⎢--------------- + − Cos(pn) ⎥ Eq 63 
                    m r=-n  ⎣  2 Sin (p/2)     2        ⎦ 

where p = [(t-(rπ)/n].  Again as m→∞ and n→∞, S’t approaches the true transform.  Equations 
62 & 63 show the summation form of the convolution product of the true transform with a filter.   
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 The FFT is really an exact representation of the finite discrete time series and is written 
as a Fourier series of a series xt, of length m,  

                    m-1 
            Zj = 1/m ∑ xk e-2πi(j/m)k, j=0,1,2,...,m/2 Eq 64 
                    k=0 

Again Zj is still complex, but it is now a discrete set of numbers instead of a continuous function 
discussed above.  The spacing of the values in frequency is δf were 

               δf = 1 harmonic = 1/(mδt) = 1/T  Eq 65 

and m is the number of sample points in the series and δt is the sample interval, and T is the 
length of the series.  The frequency of the jth estimate is given by  

               f = j δf = j/(m δt) = j/T  Eq 66 

Hence, the first value at j = 0 is the zero frequency or just the mean value.  The last estimate (the 
highest frequency) where j = m/2 is 

             f = (m/2) δf = (m/2)/(m δt) = 1/(2δt) = fN  Eq 67 

the Nyquist frequency.   

 Note that the Fourier transform really goes from -fN to +fN, (and MATLAB goes from 0 
to 2fN) but is symmetric around 0.  The real coefficients (cosine) are symmetric around zero, and 
a cosine wave has half its energy as a positive spike at its positive frequency and the other half as 
a positive spike at its negative frequency.  The imaginary coefficients (sine) are anti-symmetric, 
and a sine wave has half it energy as a positive spike at its positive frequency and the other half 
as a negative spike at its negative frequency.  Since negative frequencies have no real 
geophysical meaning, we usually plot only f = 0 to fN.  The variance from f = 0 to fN is then only 
half what it should (excluding the end points), but this can be fixed by doubling each value 
except at f = 0, and at fN.   

 In equation 64 when j=0, f = 0 and in e-2πi(j/m)k, the cosine part = 1 and sine part = 0, so Z0 
= 1/m ∑ xt = mean.  So for the first estimate, the real part is just the mean, and the imaginary part 
is always zero.   

 To summarize, the Fourier transform is a finite series Zf which was defined as  

                     m  
               Zf =  ∑ xt e-2πift ; f = 0,1,2,3,   ,m/2 
                    t=1 

and the inverse Fourier series as 

 
                           fN
               xt = 1/(2π) ∑ Zf e2πift ; t = 0,1,2,...,n 
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                          -fN

The existence requirement now is that the sum of the absolute value of the series be finite over 
the length of the series. It is obvious that for real processes that we will observe in the ocean 
environment, this requirement will be met.   
 
The power spectrum  The power spectrum (the Fourier transform of the covariance function) 
was introduced in Equation 12 as the function which integrated to the variance.  It is a real 
function which is usually calculated directly from the complex Fourier coefficients, Z, rather 
than the transform of the covariance function.   

               Power Spectrum = Z Z* = Re² + Im²  Eq 68 

Where the * represents the complex conjugate.  Therefore, the power spectrum is a real quantity, 
(Real² + Imaginary²).  For a spike in frequency of amplitude A, the FFT as we define it returns 
A² not 1⁄2A² as the covariance, therefore, the spectra is normalized by 1⁄2.  (Note that the 
MATLAB FFT function returns coefficients normalized by the length.)  This form is usually 
referred to as the periodogram.  I like to normalize the FFT so that the coefficients are the 
amplitude of the respective sine and cosine components e.g the amplitude, A.  This is nice when 
working with line frequencies such as the tides and sine waves , and the Fourier transform 
coefficient represent the amplitude of the sinusoid fitting the series.   

 The FFT produces the average transform over frequencies f-1⁄2δf to f+1⁄2δf at the estimate 
f.  Therefore, if one takes different lengths of the same series, the results are different.  In order 
to compare the results from several observations, we need the power spectral density which is 
normalized by the frequency resolution, δf.  Therefore, from our FFT results Z, the spectral 
density Pf is just 

                    Pf = 1/(2δf) Z·Z*

 Consider, 
   | 
   |                           fN
   |                  Area =   S(f)df  = σ² 
   |                           0 
   | 
   |                       ≈ ∑ (1/(2δf))Siδf 
 P(f)[units²/freq]|                         i  
   | 
   | 
   | 
   | 
   +----------------------------- 
               0         δf          fN  
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The contribution to the variance in each δf band is the area, which is given by Siδf.  To eliminate 
the δf dependence, S(f) is normalized by 1/(2δf), then spectra from different records (i.e. 
different δf) may be compared.  The units of P(f) are the original units of the series x squared per 
frequency.  i.e. if we measure surface elevation in cm with δt = 1 sec, the power spectrum has 
units of cm²/Hz.  Then the variance = the sum of Piδf from f = 0 to fN. 
 
Line and continuous processes - The normalization discussed above is proper for continuous or 
broad band phenomena.  In contrast consider a narrow band or line spectra such as the tides or 
the 60 Hz signal in the laboratory (like a sine wave).  We may identify a line spectra as follows, 
take a transform centered on the line frequency.  Then shrink δf to 0.  If Z Z* remains constant 
then the phenomena is a line spectra, i.e. energy in frequency band is 1⁄2A² and is not dependent 
on δf.  

       | 
       |  
       | 
       | 
                ---------------+-------+-----------------    
                                 δf  

If the transform is normalized by 1/(2δf), then the amplitude will vary inversely with δf.  To 
compare with other measurements of a line process, only the periodogram should be plotted, or 
just the Fourier coefficients Z.  Therefore, for a broad band and continuous process (such as 
wind waves), normalize to produce spectral density.  For narrow band or line process (such as 
tides), plot the periodogram.  Note that if one is working with computer generated sine waves, 
they are line spectra, and should be analyzed as such.  White noise (energy spread evenly over 
all frequencies such as our random number generator) is broadband (infinitely so) and should be 
analyzed as such.  
 
Cross spectra and coherence - Another useful spectra comes from the cross- covariance 
function  

                            m 
                Rxy(τ) = 1/m ∑ xjyj+τ  ⊃ Sxy(f)  Eq 69 
                           j=1 

The Fourier transform of the cross-covariance function is the cross spectrum.  Note that the 
autospectrum is real, but the crossspectrum is complex.  The crosscovariance function is not an 
even function so it transform, Sxy(f) has both a real and an imaginary parts,  

               Sxy(f) = Cxy(f) + i Qxy(f)  Eq 70 

Where the real part, Cxy, is called the co-spectra and the imaginary part, Qxy, is called the 
quadrature-spectra.  Again this can be normalized by the respective autospectra to yield, 

                         [Cxy(f)² + Qxy(f)²]     SxySxy*

               γ²xy(f) = ------------------- = -------  Eq 71 
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                             Sx(f)  Sy(f)       Sx Sy

                               ≤ 1. 

                              Qxy(f) 
               φ (f) = tanxy
                              C

-1 -------    Eq 72 
xy(f) 

where γ² is called the coherence squared, and φ the phase spectrum.  There is a difference 
between the coherence and the coherence squared, but often people refer to the coherence when 
they really mean the coherence squared.  This may be to make their coherence look better, e.g. a 
coherence of 0.8 = coherence squared of 0.64.  γ² is analogous to the cross correlation function.  
If γ² = 0, then x and y are uncorrelated, and if γ² = 1, then x and y are clearly related, and y could 
be considered a linear function of x.  This is useful in exploring the response of some filter or 
model to an input x(t) as an input and y(t) as an output.  If γ² is between 0 and 1, 0<γ²<1, (as it 
usually is) then we have: 

1. extraneous noise is present 
2. the system relating x and y is nonlinear 
3. y(t) is due to x(t) as well as other inputs. 

One can go a step farther and consider the multiple coherence between several inputs and one 
output to study or model linear systems.   

When estimating the coherence directly from the FFT, one uses the real and imaginary parts of 
the cross-spectra.  If one has  

                    xt ⊃ Xf

                    yt ⊃ Yf

then 

                              [X Y*]² 
                    γ²xy = -----------    Eq 73 
                           [X X* Y Y*] 

This is identically one unless the values are averaged over some finite bandwidth in some way.  
(That is sine waves of the same frequency have a coherence of 1, and one can exactly construct 
the second from the first by adjusting the amplitude and phase by a constant.)  The averaging can 
be done either by breaking the time series into blocks, transforming each block and averaging the 
coefficients of the blocks together, or by transforming the entire series then do some averaging 
by combining coefficients in frequency space.  The coherence is the amount of energy in both x 
and y which has a constant amplitude and phase relation over the averaged frequency band.  A 
three or five point triangular filter might be appropriate to use in the frequency domain.  I use 
block averaging as does MATLAB and is generally faster than calculating a very long fft.  
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*** Assignment #6 *** 

A. Generate two sine waves of the same frequency with different phase, and different random 
noise added.  Plot your results. 

B. Calculate the power density spectrum of both series and plot (log-log). 

C. Calculate the Coherence squared function and plot.  Discuss your results?   
 
Window effects and their removal  Our finite record length, T, results from applying a gate 
function to the time series.  This is also called windowing, i.e. looking at time space through a 
window allows us only to see a part of the real view.  We showed that gating a function is the 
same as convolving its transform with the sinc function.  The gate function and sinc functions are 
shown below.   

 
The filter cuts of sharply in time, but this is at the expense of peaks and sidelobes in frequency 
space.  (Note the reverse is also true, cutting off too sharp in frequency is the same as convolving 
with the sinc function in time space.  i.e. you want the filter to cut off smoothly.)   

 If we consider looking at a line spectra (which is a sharp spike in the frequency domain) 
which has been gated, we get an output as shown in (a) on the next page.  Since we can not 
resolve the two peaks, we need to increase the length of the series to get improved resolution.  
Lengthening the gate, as shown in (b), gives more resolution in frequency space, but does not 
eliminate the side lobes which result from the sharp gate.  A less sharp function is the triangular 
gate (as shown in (c) below).  Now, the effects due to the side lobes are reduced over (a) and (b), 
but are still noticeable.  Note how broad the line spectra have become.  The record length is not 
sufficient to resolve the spectra properly in frequency space.  To suppress the small sidelobes, 
we want to make the transition smoother.  The final graph (d) shows a full cosine bell, or cosine 
taper put on the data by 

                   W(t) = 1/2 [1-cos(2πt/m)]  Eq 75 
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where m is the length of the series and t runs from 1 to m.  W(t) is then zero outside this range of 
t, i.e. 1 to m.  This cosine taper is often applied to the data to remove the end effects due to 
gating, and as shown in (d) below, the side lobes are nicely reduced to a minimum.  Since we 
gated our series, or suddenly started and stopped, these sharp stops and starts do effect the 
spectra and statistics, and are not in the data, but due to the way we sampled the continuous data.  
However, when we apply a taper to bring the energy up and down smoothly, we remove energy 
and the resulting amplitudes are decreased, and this decrease must be corrected for.  For a full 
cosine taper, the new amplitudes are 5/8 the original and the energy is 3/8 the original.  This 
filter can be applied as a multiplication of the cosine bell in time space,  

                    x’(t) = x(t)·w(t) 

or the equivalent convolution in frequency space 

                    S’(f) = S(f) * W(f) 

where w(t) ⊃ w(f).  Two approximations of these weights in frequency space are 
               1. Hanning - {-1/4, 1/2, -1/4} 

               2. Haming - {-0.23, 0.54, -0.23} 

These are then convolved with the complex transform of xt and the effect is the same as 
multiplying by the cosine bell in time space.  Removing so much energy to improve the 
resolution is troublesome, since we have lost more than 1/2 the energy (really 0.375).  A 
compromise seems to be to apply a cosine taper to the first and last 10% of the data, thus 
eliminating the sharp edges of the gate function which have the bad side lobes.  The amplitudes 
are now 0.9354 of the original (the energy is 7/8 of the original).  The convolution theorem tells 
us that we can apply the full cosine taper in time space, or transform and convolve with the 
transform of the cosine window. We have then removed or minimized the effects of our finite 
record length in the Fourier transforms.  

I generally go through the following steps when I first look at a data set: 
1.  Plot the series as a function of time and look for bad points, etc.   
2.  Do simple statistics on the file (mean, maximum, minimum and variance)   
3.  Look at the data in frequency space:  

a. divide into blocks of length power of 2 
b. remove a linear least squares trend from each block 
c. apply a 10 % cosine taper to each block (or a full cosine taper or Hann) 
d. fast Fourier transform and average results from blocks 
e. create a power density spectrum correcting for FFT normalization 
f. normalize for energy lost by windowing 
g. log-smooth the data for plotting (so frequency linearly spaced in log space) 
h. calculate confidence limits and compare with peaks in data 
i. plot power density spectrum as log-log 

 37



 

 
Degrees of freedom and Spectral Confidence limits   Where the process we are sampling is 
assumed to be a Gaussian random process in time, the spectrum values are χ² (Chi Squared) 
distributed with ν degrees of freedom. 

                       ν = 2 T δf      Eq 76 

where T = m δt is the duration or length of the record and δf is the desired final frequency 
resolution.  Note that δf need not necessarily be 1/T.  For increased confidence (greater degrees 
of freedom) and the same resolution in frequency, we need a longer record.  Or for the same 
length record, we loose frequency resolution as we gain confidence.  Therefore, there is a 
tradeoff of confidence versus resolution which needs to be considered.  The figure on the 
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following page gives the confidence limits as a function of the number of blocks averaged or the 
degrees of freedom for a simple autospectrum.  Simply, as more data is averaged together, the 
more confident one is that the results obtained are good and truly represent the statistics of the 
environment. 

As an example, for a raw spectra with no averaging, ν = 2.  If we want to be 90% confident that 
the true value is between 0.6 and 1.8 times our estimated value, then from the table and plot on 
the following pages, we must have a ν > 20.  We therefore need a record 10 times as long to get 
this confidence, and keep the same frequency resolution.  We can also lose resolution by a factor 
of ten to gain the same confidence.  Even with these apparently wide limits, we are only saying 
that we expect 9 out of every 10 values to fall within the confidence limits.   

Significance Level in Coherence - Similar to the confidence limits of the spectral estimate, there 
are confidence limits on the coherence estimate itself as well as is a confidence associated with 
the significance of the coherence itself.  This is often referred to as a "bias" and is a level above 
which the coherence is considered significant.  In other words, if the coherence is below this 
level it is not statistically significant.  Again this is estimated from the number of blocks of data 
averaged together to form the coherence estimate, or the degrees of freedom.  The 90% 
significance levels in coherence squared are given in the table below along with the 90% spectral 
confidence limits. 
 
TABLE OF 90% CONFIDENCE AND 90% SIGNIFICANCE LEVELS 
adapted from: Koopmans The Spectral Analysis of Time Series, 1974. Table A9.6 on Page 439 
 

Numbe
r 
of 

Blocks 

degrees 
of 

freedo
m 

lower 
spectral 

limit 

upper 
spectral 

limit 

90% 
significance 

level 

1 2 0.338 19.418 1.000 
2 4 0.422 5.626 0.948 
3 6 0.476 3.670 0.827 
4 8 0.516 2.927 0.729 
5 10 0.546 2.538 0.662 
8 16 0.608 2.010 0.530 
10 20 0.637 1.843 0.475 
15 30 0.685 1.622 0.390 
20 40 0.717 1.509 0.338 
25 50 0.741 1.438 0.302 
30 60 0.759 1.389 0.276 
40 80 0.785 1.325 0.239 
50 100 0.808 1.283 0.215 
100 200 0.855 1.189 0.152 
200 400 0.894 1.128 0.107 
350 700 0.918 1.094  
500 1000 0.931 1.078  
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Plot of the 90% confidence limits for spectra from the table on the preceding page from 
Koopmans. 
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Plot of the 90 % significance level test for zero coherence from the table from Koopmans 
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