
Lecture #8:  Ray-mode picture connections and Perturbation Theory 

A. Rays as interfering modes 

We will follow a simple, physical argument paper by Tindle and Guthrie entitled 
“Rays as interfering modes in underwater acoustics”, J. Sound and Vib 34(2) 291-295 
(1974).       

The traditional picture of modes is that of constructively interfering plane waves at 
angles  .  We will show here that rays can be represented as constructively 
interfering groups of neighboring normal modes centered at certain angles. We will 
use simple WKB arguments for this.  

 We have seen that the WKB solution for the nth normal mode is: 

where z is the depth downward, nz is the upper turning point of the solution and  
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The WKB solution  is good for amplitude and phase away from the turning points. 
Phase is also good near the turning points (whereas amplitude diverges). Since phase 
is our biggest concern here, we caqn take the WKB solution to be good everywhere.  

As usual, we can write the pressure as: 
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Using the WKB mode expression and the asymptotic form of the HAnkel function, 
we get the phase each mode accumulates in its travel from source to receiver, i.e. 
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Where the +/- comes from the square root, the first term on the RHS is the vertical 
phase accumulation, and the second term on the RHS is the horizontal phase 
accumulation. We have four forms of phase possible, since besides the +/- sign, the 
integral can be taken directly (as above) or via the upper turning point, i.e.  
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Now we examine the condition for the successive terms in the mode sum to be in 
phase. Successive modes interfere constructively provided the change in phase   
corresponding to a change in mode number n  is equal to some multiple of 2 . 
Thus: 
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Strong reinforcement occurs only over a short range of mode numbers n, since   varies 
rapidly with n.  

Groups of neighboring modes thus interfere constructively at depth,range (z,r) given by 
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This is interesting, since in ray theory the equation of a ray path which leaves a source of 
depth sz  and crosses the channel axis (where c(z)= 0c =minimum) at angle 0  is: 
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The second term on the RHS is the full number of ray cycle distances, whereas the first 
term expresses the remaining distance (less than a full cycle).  

We can “compare notes” between the two equations for r and see that the ray equation is 
the same as the constructive interference conditions for modes if: 
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In the first equation above, we can always pick an angle 0  that satisfies the equation. 
The second equation is just that the ray cycle distance equals the mode cycle distance, 
which it does in the absence of beam displacement. Thus, the mode interference equation 
is the same as the ray equation! 

B. Perturbation Theory 

One of the most useful mathematical techniques available is “perturbation theory”, where 
one finds the mathematical description of an unknown system in terms of a known 
system that is nearby (“within a perturbation”). This technique is used in all branches of 
science and engineering, and there are many books available that discuss aspects of this 
technique. In this course, we will just look at a variant called “time independent 
perturbation theory” which comes from the quantum mechanical Schroedinger equation, 
which is of course an analogue to the Helmholtz equation of acoustics. In fact, it isworth 
showing how the quantum system and our acoustic system correspond, in that many 
useful variants of perturbation theory are found in standard physics texts. 

Let’s start out with our modal equation: 
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where as usual  )(/)( zczk   and )(222 zkk mm  . We can thus write the mode 
equation as 
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or in1-D as 
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In quantum mechanics, the analogue of the above equation is  
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The above two equations are the unperturbed Helmholtz and Schrodinger equations, 
respectively, and form the “known systems” that we have solutions for. Now we put the 
useful twist on the problem. Suppose we add a little extra term to 0H in quantum 
mechanics (or k(z) in acoustics.)  This will give a small change to the eigenvalues and 
eigenvectors in each case. Let’s look at what happens in the Schrodinger equation form: 

     mmmmmm EEHH   0000 '  

We can identify the four bracketed terms as new variables, i.e. 

mmmnew EH '''    

We now expand the new eigenvalues and eigenvectors in a power series using the small 
parameter  , i.e. 

m' = ...2210  mmm   

mE ' = ...2210  mmm AAA   

Now we substitute these back into our “new” eigenvalue equation to get (to 2nd order): 
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We now equate powers of  on each side, and get a hierarchy of equations. At zeroth 
order we get: 
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mm    and 00
mm EA   

At first order, we obtain: 

 010 ' mm HH   =  0110
mmmm AA      which we operate on with  dzzm )(0  . 

Doing this, the first terms on the LHS and RHS cancel each other out, and we are left 
with: 
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Setting 1  for convenience (we don’t need to, but…), we re-identify the variables as 
above to get: 
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This is our first order energy/wavenumber correction, and the perturbation part of the 
problem is done. Now we just want to identify H’ with some sort of useful perturbation. 
Let’s start out with attenuation, which is normally treated by adding a small imaginary 
part to the wavenumber. If we let ikk  '  and note that for small α ckk /'  , we 
can write 
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Thus we see that 

c
iH


2'  

This is still a bit off from the horizontal wavenumber form we need for ocean acoustics, 
since what is used is in ocean acoustics mk  and not 2

mk  (the latter of which is proportional 
to energy in quantum mechanics). So we write: 
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Since we know the zeroth order equation, and we can ignore the higher order terms, we 
get 

1
mE = mm kk 2  

Thus we can write, using the attenuation as a vertical profile (function of z), that 
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          Attenuation Perturbation 

This is the perturbation form that is commonly used to insert attenuation effects into 
modal eigenvalue calculations (rather than using a complex root finder, which is far 
harder calculationally).  
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 One can also perturb the wavenumber by perturbing the soundspeed, which is a 
very useful thing to do. Thus we write a “ soundspeed perturbed”  wavenumber as  
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Using our previous notation, this quickly gives 
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which in terms of the wavenumber perturbation is 
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     Soundspeed Perturbation 

This is very useful in that one can take a simple system (say a hard bottom waveguide) 
and add some realistic )(zc profiles to it to mimic rather complicated ocean 
waveguides. This type of calculation can give a lot of physical insight into how the 
modes of complicated waveguides work, in fact often in an analytic form!! This has 
turned out to be a very useful approach for 3-D acoustics. The perturbation integrals are 
also “Fredhom Equations of the first kind” which can be inverted for      and       
given that one has experimentally measured the    and/or the     experimentally. This 
will be discussed in the section of the course treating inverse theory. 

In finishing this section on wavenumber perturbation, it should be mention that one can 
perturb the frequency ω as well. This leads to an integral expression for the group 
velocity, which is useful in that the usual derivative based expression for modal group 
velocity can easily suffer from numerical noise problems, whereas integrals do not. This 
derivation can be found in COA. 

  

6



MIT OpenCourseWare
http://ocw.mit.edu

2.682 Acoustical Oceanography
Spring 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



