2.674 Introduction to Microfluidics II

- Droplets and Surface

Sang-Gook Kim

Understanding diffusion

 Macroscopic diffusion 'results' from random motion of individual molecules

$$\overline{\chi^2} = 2 \cdot D \cdot t$$

• When a large number of molecules is observed, diffusion seems to be a smooth, continuous process with no indication of underlying randomness

Observe random motion of microspheres in the lab!

Scales of Fluidics			
Microfluidic devices - dimensions			
MICROFLUIDIC DEVICES Micropumps/ valves/ flow sensors			
Microfilters/ microreactors			
Nanotechnology/ Nanodevices? Microneedles Microanalysis systems			
1A 1mm 1 µm 1mm 1m	Length scale		
1 aL 1 fL 1 pL 1 nL 1 mL 1 L 1000	L Volume scale		
Molecules Smoke particles Human hair	lan		
OTHER OBJECTS Bacteria Conventional f	luidic devices		
E-coli			
© Karen Cheung, UBC ECE, All rights reserved.			
This content is excluded from our Creative			
Commons license. For more information,	1 molecule in 1 mL = $1.6 \times 10^{-18} \text{ M}$		
see https://ocw.mit.edu/help/faq-fair-use.	1 molecule in 1 nL = 1.6 x 10 ⁻¹⁵ M		
	1 molecule in 1 pL = 1.6 x 10 ⁻¹² M		
Credit: Dr. Karen Cheung, UBC ECE			

Scaling of Forces		
Types of forces	Equation	
Capillary force	$F_C = 4\pi R\gamma \cos\theta$	
Hydrophobic/hydrophilic	$F_{H}pproxrac{2\gamma(1-\cos heta)(\pi R^{2})}{d}$	
Viscous drag force	$F_d=6\pi\eta(R)v$	
Electrostatic force	$F_{ES} = \frac{1}{4\pi\varepsilon_0\varepsilon_m} \frac{\{q_1(2\pi R_1^2)\}\{q_2(2\pi R_2^2)\}}{r^2}$	
Dielectrophoretic	$\begin{split} F_{DEP} &= \frac{3}{2} \left(\frac{4}{3} \pi R^3 \right) \varepsilon_m \left(\frac{\varepsilon_o - \varepsilon_m}{\varepsilon_o + 2\varepsilon_m} \right) \nabla \vec{E} ^2 \\ &\approx \frac{3}{2} \left(\frac{4}{3} \pi R^3 \right) \varepsilon_m \left(\frac{\varepsilon_o - \varepsilon_m}{\varepsilon_o + 2\varepsilon_m} \right) \frac{r^2 V^2}{d^5} \end{split}$	
Gravitational force	$F_G = g\rho\left(\frac{4}{3}\pi R^3\right)$	
Electrophoretic	$F_{_{EP}}=q(4\pi R^2) ar{E} $	
Magnetic	$F_{M} = \frac{\mu_{0}\mu_{m}}{4\pi} \frac{q_{M1}q_{M2}}{r^{2}}$ $= \frac{\mu_{0}\mu_{m}}{2} (\pi R^{2})M^{2}$	Sang-Gook Kim, <u>Multi-scale</u> <u>Assembly: Design, Processes and</u> <u>Complexity</u> , In; Nanomanufacturing, S. Chen, Ed., American Scientific Publishers, 2009

2.674 / 2.675 Micro/Nano Engineering Laboratory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.