
Lab 10: AFM

April 22-22 2016

Procedure

1) Understand

 Walk-through of the system, identifying important controls & hazards

2) Calibrate

Generate calibration curve

3) Image samples

- MEMS device
- CD tracks
- Calibration grating

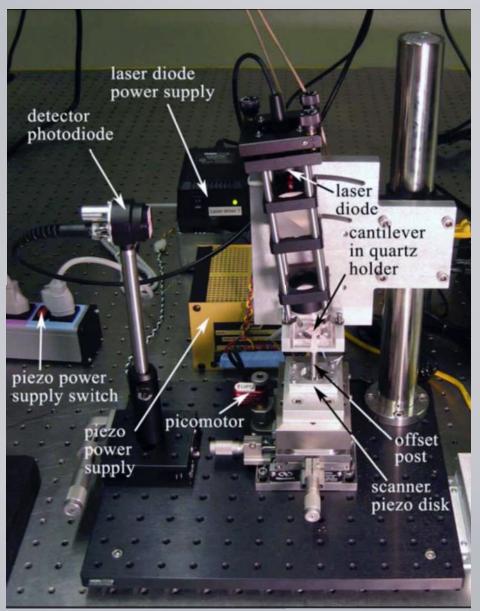


Image courtesy of Edward Boyden. Used with permission.

Our AFM Setup

Piezo control of the sample

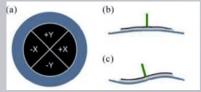


Image courtesy of Edward Boyden. Used with permission.

- Interdigitated fingers
 - Diffraction pattern of dark & light spots called modes
 - $\lambda = 635$ nm for laser Do not stare into the laser!

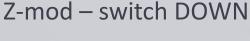
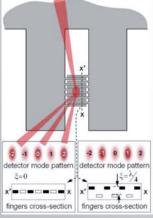
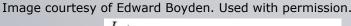
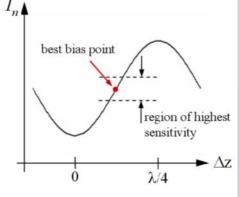


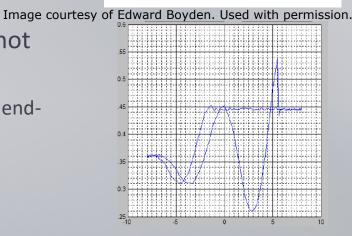
Image courtesy of Edward Boyden. Used with permission.

- Use for calibration
- Image mode switch UP
 - Use to measure samples
- Recommend "Print Screen" for data acquisition


Image courtesy of Edward Boyden. Used with permission.

Calibration in Z mod


- Goal: Relate detector's voltage signal to physical tip deflection
 - nm of tip bending per volt of signal

- Find good bias point when tip touches then releases
- Mode from fully bright to dark (peak to trough on \sin^2 function) when fingers deflect a distance of $\lambda/4$, about 160 nm
 - Use this to quantify horizontal axis
 - Calculate slope, nm/V

- Need to correct slope as interdigitated finger is not tip deflection
 - Use equation for simple rectangular beam with applied endload
 - $A_{corr} = 2/(3m_{id}^2 m_{id}^3)$, $m_{id} = L_{ID}/L_T$
- Once you calibrate do not move any optics!

Image Mode

- Stop z-mod
- Switch sample, if needed
- Engage tip
- Start imaging!
- Capture scans to get image dimensions
- Capture scope view scans to give feature height data

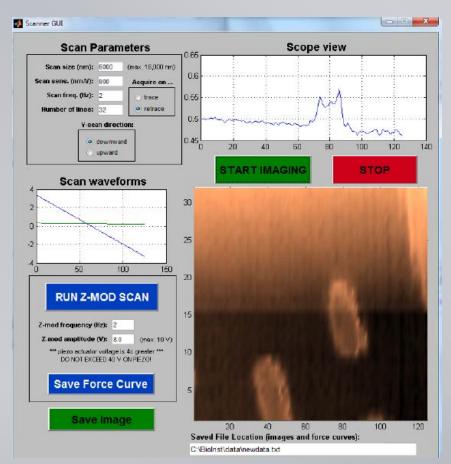


Image courtesy of Edward Boyden. Used with permission.

Thermal Noise

- 1) Calibrate can use the same factor as part 1 if no changes to system
 - Calibration using bare Si wafer, run z-mod
- 2) Increase gain
 - Make note of gain change and adjust calibration factor
- 3) Measure thermal noise
 - Run Labview Spectrum Analyzer tool
 - Observe 1/f noise, thermomechanical "white" noise, and resonance peak(s)
- 4) Perform calculation and check values
 - Calculate Q, ratio of energy stored/energy dissipated
 - Calculate <x²>, spectral density of cantilever deflection in flat region below resonance peak (white noise region)
 - Solve expression for k, and calculate experimental spring constant— check units and compare to given value in lab notebook
 - Q = $k/(b\omega_0)$, $\langle f_n^2 \rangle = 4k_b Tb = k^2 \langle x^2 \rangle$

MIT OpenCourseWare https://ocw.mit.edu

2.674 / 2.675 Micro/Nano Engineering Laboratory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.