Lecture 1: Using Matlab

- Using Matlab
- Setting Up for Matlab
- Basic Calculations
- The Matlab "Environment"
- Matlab Functions
- Matrix Math
- Matrix Math
- A Motivating Example
- Examine the Lift Linkage
- Model a System of Forces
- Support Forces
- Forces on the Bin
- System of Equations
- What Force for 10lbs Weight?
- What about other Weights?
- Call the m-file
- Expand the m-file
- The Matrix Determinant
- Plotting Data in Matlab
- Matlab plots data, not functions
- A Motivating Example
- Cool Time Data
- Plotting Data
- Why an Exponential Look?
- Convective Cooling
- Curve Fitting
- Transform Data to a Linear Form
- Plot the Ln Data
- Find the Least Squares Fit
- Plot both Data and Line
- Formatting Plots
- Plot the Exponential Equation

Notes:

This the first day of matlab, and presumes you have sat through the "Introduction to Matlab" training session.

Notes:

First you need to set up your athena (server) environment to be matlab-happy.

Notes:

Matlab does basic calculations as you would expect.

Notes:

In matlab, you can do all the UNIX commands.
There is an idea of the matlab workspace. As you define variables and formulas, they are stored, overwritten, expanded, deleted. But there is a state of the matlab environment at any point.

You may choose to leave matlab because of time pressure. You can store the state of matlab with a save command. Then quiot matlab, and leave. Later, after starting matlab, just enter load, and the file matlab.mat will be loaded, which restores the state of matlab to what it was when you did the save.

```
2.670
ME Tools Matlab Functions
    %Consult your Quick Reference Guide
    help function provides info
    *20 Categories of Functions
\begin{tabular}{llll} 
color & funfun & matfun & sparfun \\
datafun & general & ops & specfun \\
demos & graphics & plotxy & specmat \\
elfun & iofun & plotxyz & sounds \\
elmat & lang & ployfun & strfun
\end{tabular}
```

Notes:

There are many matlab functions..

Notes:
lets try some matrix math.

```
    2.670
    ME Tools
* 2.007 Contest runner up from a few years ago
\(\because\) Drove across a pipe, lifted up a box of balls, an dumped them into a bin
```


A Motivating Example

Notes:

Now lets see how we might use this.

2.670

ME Tools

Support Forces

$$
\begin{aligned}
& Y-F \sin \left(\pi-\theta_{3}\right)+R=0 \\
& X-F \cos \left(\pi-\theta_{3}\right)=0
\end{aligned}
$$

${ }^{\text {ME Foos }}$ Forces on the Bin

$-Y+F \sin Q_{3}-W=0$
$L_{w} \cos \mathscr{Z}_{w} W-I_{2} \cos \mathscr{Q}_{2} F \sin \left(\xi-\mathscr{G}_{3}\right)-I_{2} \sin \mathscr{Q}_{2} F \cos \left(\xi-\mathscr{G}_{3}\right)=0$
2.670

ME Tool

System of Equations

This defines a system of equations
$\left[\begin{array}{cccc}1 & 0 & \cos \theta_{3} & 0 \\ 0 & -1 & \sin \theta_{3} & 0 \\ 0 & 0 & L_{2} \sin \left(\theta_{3}-\theta_{2}\right) & 0 \\ 0 & 1 & -\sin \theta_{3} & 1\end{array}\right]\left\{\begin{array}{c}X \\ Y \\ F \\ R\end{array}\right\}=\left\{\begin{array}{c}0 \\ W \\ L_{w} \cos \theta_{w} W \\ 0\end{array}\right\}$

Or in matrix/vector notation
$[B] \vec{F}=\vec{R}$
Note that
$\theta_{2}=70^{\circ} \quad L_{2}=1.5^{\prime \prime}$
$\theta_{3}=110^{\circ}$
$\theta_{w}=62^{\circ} \quad L_{w}=6.5^{\prime \prime}$

```
2.670
ME Tool
What Force for 10lbs Weight?
```

```
>> radZ = 70*pi/180;
```

>> radZ = 70*pi/180;
>> rad3 = 110*pi/180;
>> rad3 = 110*pi/180;
>> radw = 62*pi/180;
>> radw = 62*pi/180;
>> L2 = 1.5;
>> L2 = 1.5;
> Lw = 6.5;
> Lw = 6.5;
> W = 10;
> W = 10;
>> Bmat = ..
>> Bmat = ..
[1 0 cos(rad3) 0 ;...
[1 0 cos(rad3) 0 ;...
0 -1 sin(rad3) 0;..
0 -1 sin(rad3) 0;..
0 0 L2*sin(rad3-radZ) 0 ;...
0 0 L2*sin(rad3-radZ) 0 ;...
0 l -sin(rad3) l];
0 l -sin(rad3) l];
>> Rvec = ...
>> Rvec = ...
[0 ; W ; LW*cos(radw)*W ; 0];
[0 ; W ; LW*cos(radw)*W ; 0];
>> Fvec = Bmat*(-1)*Rvec
>> Fvec = Bmat*(-1)*Rvec

What about other Weights?

$*$ To try many weights, we need an m-file to call many times \because Call the m-file force.m	```function Fvector = force(T) * returns the reaction and * piston forces for a given * load, at the initial position. r2 = 70*pi/180; r3 = 1l0*pi/180; rw = 60*pi/180; L2 = 1.5; Lw = 6.5; Bmatrix = ... [1 0 cos(r3) 0 ;... 0 -1 sin(r3) 0 ;... 0 0 L2*sin(r3-r2) 0 ;... 0 l -sin(r3) l]; Rvector = ... [0 ; W ; Lw* cos(rw)*W ; 0]; Fvector = Bmatrix^(-1)*Rvector;```

2.670

ME Tools Gal|the Mrfile
$\gg F=$ force (7)
$F=$

$\gg F=$ force (6)
$F=$
6.4948
11.8444
18.9896
6.0000
X force on the pin
Y force on the pin
F piston force
R force holding up structure

```
    2.670
    METoos Expand the m-file
Read into the m-file
    rad2, rad3, radw
    as a vector ang
* Try
    ang(1) = 70*pi/180
    ang(2) = 70*pi/180
    ang(3) = 62*pi/180
* What happened?
    Why?
```


2FOME Tools

2.670

${ }^{\text {Mefook }}$ The Matrix Determinant

```
function Fvector = force (W,ang)
r2 = ang(1);
r3 = ang(2);
rw = ang(3);
L2 = 1.5;
Lw = 6.5
Bmatrix =
    [ 1 0 cos(r3) 0 ;...
        0 -1 sin(r3) 0 ;...
        0 0 L2*sin(r3-r2) 0 ;...
        0 l -sin(r3) l ];
disp(`The determinant is `);
disp(det(Bmatrix));
Rvector = ...
    [ 0 ; W ; Lw* cos(w)*W ; 0 ];
Fvector = Bmatrix^(-1)*Rvector;
```

\gg force($10,\left[700^{*} \mathrm{pi} / 180\right.$,
70 *pi/ 180 ,60 *pi/1801)
The determinant is 0
Warning: Matrix is singular to working precision.
$\mathbf{f}=$
Han_{2}
Han_{2}
$\mathrm{H}_{2} \mathrm{~N}$
$\mathrm{H}_{2} \mathrm{H}$
$\% \mathrm{~B}$ is singular

* So even infinately large forces cannot support the bin at these angles.

Plotting Data in Matlab

2.670

ME Tool:

Matlab plots data, not functions

\star If you have a vector pair of data, plot it

```
>> load('data.dat')
```

\gg plot (data $(:, 1), \ldots$ data(:,2))

* If you have a function to plot, first you must generate data that represents it
\gg Xvec $=0: 0.01: 4$;
>> Yvec $=\sin ($ Xvec $) ;$
>> plot (Xvec, Yvec)

ME Tool

A Motivating Example

\because How long until you can grab the machine after blowing out the flame?

11mm）	rF）	11mm）	r（F）	11mm）	r（F）	｜｜mm）	r（F）	1｜mm）	r（5）	1／mm）	r（F）
015	89	430	24	atr	198	1289	130	1rat	20.3	21.17	ars
098	8184	4 Cr	2408	3 as	158 n	19 ga	1148	1 rar	28.8	21.29	ars
030	32	438	288	980	128.	19.15	118	1 rag	98.3	2130	3 ra
0 Cr	329＊	300	270	a）	148	12.8	1112	1 ra	23	218 r	38
038	368＊	315	2218	298	142	1230	19	＇rar	23	2138	38
10	360	398	278	230	1430	12.8	19	1 ras	23	22.0	38
11 r	4录3	330	2183	20 r	1498	12 Sa	112	13n0	29.3	22.1 r	38
129	40＊＊	38 r	2183	238	1418	1480	$1 \mathrm{~m}_{4}$	13.15	293	22.38	3×2
130	4 cm	338	2 O	1080	140	14.15	$1 \mathrm{ma}^{4}$	13.38	29.3	22.0	3×2
18 r	478	$\square 0$	2 ma	18.15	140	14.98	igra	13.0	293	22.8	3×2
139	$4{ }^{\text {max }}$	ar	178	10.98	192	1430	＇arg	＇3nt	214	2238	3×2
200	2 m	898	1 gra	10	12 E	148 r	$1 \mathrm{~m}_{3}$	13.38	29.3	29.0	3×2
215	209	030	18	igr	120	1439	$1 \mathrm{~m}_{5}$	1980	214	29.1 r	3×2
228	201＊	ar	1 m	10.81	128	1380	$1{ }^{10}$	19.15	218	22.39	32.4
230	930．	038	188	1180	121	13.15	$1{ }^{10}$	12.98	214	29.0	32.4
28 r	29	ram		11.15	121	13.98	$1{ }^{10}$	12.0	214	29.8	32.4
238	$\mathrm{m2r}^{2}$	rir	1 m	1198	18 B	1350	$1{ }^{102}$	19 r	214	2939	3214
9 ga	218＊	12	1 mz	1130	＇8．	138 r		1238	398	2400	32.4
ajr	gurs	$r 30$	1 mL	＇18r	18.	13.38	＇⿴囗十⿴囗十力＊＊	2080	398	24.17	32.4
298	90\％	rar	12\％	1138	18．	18080	1四＊	20.15	39.8	24.38	32.4
230	220	r39	1×8	1200	1 ma	18.15	1田＊	20.38	ara	2430	32.4
9 O	230	a	1 mz	12.15	173	18.98	1田＊	20.00	3 a	24.80	30.8
238	213	ar	1＊＊	12.98	17	1830	938	20.8	ara	2439	30.8
40	2m	392	158	1230	17	18.8	93.8	20.39	$\mathrm{ara}^{\text {ra }}$	2500	30.8
4 r	2m0	a30	159	12 Er	1783	18.38	28.3	2100	ara	25.17	30.8

2.670
 ${ }^{\text {mer Foot }}$ Plotting Data

Copy the temperature data file from the 2.670 locker athena* cp /mit/2.670/Computers/matlab/temp. dat $\sim /$ matlab

Read data from a file into matlab
>> load('temp.dat');
>> tvec=temp (:, 1);
>> TmpDatavec=temp (: 2);
Now plot the measured data
>> plot (tvec,TmpDatavec)

Hmmm.
Looks exponential.

Why an Exponential Look?

The plot looks like an exponential decay...
Convection Cooling $\Rightarrow q=h A\left(T(t)-T_{\infty}\right)$

$$
\text { Lumped Mass } \Rightarrow-q=m c_{p} \frac{d T}{d t}
$$

$$
\frac{d T}{d t}=\frac{-h A}{m c_{p}}\left(T(t)-T_{\infty}\right)
$$

Convective Cooling

Transform variable $\quad D=T-T_{\infty} \quad \dot{D}=\dot{T}$
So $\quad \frac{d D}{d t}=\frac{-h A}{m c_{\boldsymbol{p}}} D \quad \Rightarrow \quad \frac{-h A}{m c_{\boldsymbol{p}}} d t=\frac{d D}{D}$
Integrate $\int_{0}^{t} \frac{-h A}{m c_{y}} d t=\int_{L_{0}}^{D} \frac{d D}{D} \Rightarrow \frac{-h A t}{m c_{y}}=\ln \left(\frac{T-T_{\infty}}{T_{0}-T_{\infty}}\right)$

So

$$
T=T_{\infty}+\left(T_{0}-T_{\infty}\right) e^{\left(\frac{-k t}{m c_{x}}\right)^{2}}
$$

Curve Fitting

\approx Matlab only fits polynomials to data....
>> polyfit (Xvec, Yvec, 1)
fits a least squares best line

$$
y_{\text {preaicted }}=\beta_{0}+\beta_{1} x
$$

to a dataset

$$
\left[\vec{x}, \vec{y}_{\text {measured }}\right]
$$

ME Tools
Transform Data to a Linear Form
\div Our data is exponential, not linear
So take the $\log ($.$) of the data$

2.670
 ${ }^{\text {mef Toos }}$ Plot the Ln Data

Just to convince ourselves, lets plot the $\log ($.$) data.$

2.670

ME Tools

Find the Least Squares Fit

Find the coefficients that least squares best fit a line (a linear polynomial)
>> beta=polyfit (tvec, lnDeltaDatavec, 1) beta $=$

Which tells us	$\ln (T(t)-65)=5.8-.13 t$
or	$T(t)=65+330 e^{-13 t}$

Do you believe this least squares best fit model?

Lets check by visualizing the data.

2.670
 ME Tool
 Plot the Exponential Equation
 The least squares best fit expoential model to the data is then
 $T=65+330 e^{-.13 t}$
 How long until we can grab our engine?

