Lecture 1: Using Matlab

- Using Matlab
- Setting Up for Matlab
- Basic Calculations
- The Matlab "Environment"
- Matlab Functions
- Matrix Math
- Matrix Math
- A Motivating Example
- Examine the Lift Linkage
- Model a System of Forces
- Support Forces
- Forces on the Bin
- System of Equations
- What Force for 10lbs Weight?
- What about other Weights?
- Call the m-file
- Expand the m-file
- The Matrix Determinant
- Plotting Data in Matlab
- Matlab plots data, not functions
- A Motivating Example
- Cool Time Data
- Plotting Data
- Why an Exponential Look?
- Convective Cooling
- <u>Curve Fitting</u>
- Transform Data to a Linear Form
- Plot the Ln Data
- Find the Least Squares Fit
- Plot both Data and Line
- Formatting Plots
- Plot the Exponential Equation

This the first day of matlab, and presumes you have sat through the "Introduction to Matlab" training session.

First you need to set up your athena (server) environment to be matlab-happy.

```
2.670
ME Tools Basic Calculations
      >> 7+8
                                          >> sin(7)
      ans =
                                          ans =
         15
                                              0.6570
                                          >> sin(7*pi/180)
      >> 7*8
      ans =
                                          ans =
          56
                                              0.1219
      >> 7^8
                                          >> 1/0
                                          Warning: Divide by sero
      ans =
          5764801
                                          ans =
                                               Inf
                                          >>1/0
2.670 ME Tools
```

Matlab does basic calculations as you would expect.

In matlab, you can do all the UNIX commands.

There is an idea of the matlab workspace. As you define variables and formulas, they are stored, overwritten, expanded, deleted. But there is a state of the matlab environment at any point.

You may choose to leave matlab because of time pressure. You can store the state of matlab with a save command. Then quiot matlab, and leave. Later, after starting matlab, just enter load, and the file matlab.mat will be loaded, which restores the state of matlab to what it was when you did the save.

Matlab Functions

- Consult your Quick Reference Guide
- help function provides info

```
color
                              sparfun
         funfun
                    matfun
datafun
         qeneral
                    ops
                              specfun
         graphics
                    plotxy
                              specmat
demos
elfun
         iofun
                    plotxyz
                              sounds
         lang
                    ployfun
elmat
                              strfun
```

2.670 ME Tools

. .

Notes:

There are many matlab functions..

Matrix Math

2.670 ME Tools

-

lets try some matrix math.

A Motivating Example

- 2.007 Contest runner up from a few years ago
- Drove across a pipe, lifted up a box of balls, an dumped them into a bin

2.670 ME Tools

2

Notes:

Now lets see how we might use this.

Examine the Lift Linkage

- How much weight in the bin can the air cylinders lift?
- An air cylinder can exert ~2 lbs force at 50 psig.

Support Forces

Forces on the Bin

$$-Y + F \sin \frac{2}{3} - W = 0$$

$$L_{w} \cos \mathcal{L}_{W}W - L_{2} \cos \mathcal{L}_{2}F \sin(\mathcal{R} - \mathcal{L}_{3}) - L_{2} \sin \mathcal{L}_{2}F \cos(\mathcal{R} - \mathcal{L}_{3}) = 0$$

System of Equations

This defines a system of equations

$$\begin{bmatrix} 1 & 0 & \cos\theta_3 & 0 \\ 0 & -1 & \sin\theta_3 & 0 \\ 0 & 0 & L_2\sin(\theta_3 - \theta_2) & 0 \\ 0 & 1 & -\sin\theta_3 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ F \\ R \end{bmatrix} = \begin{bmatrix} 0 \\ W \\ L_w\cos\theta_wW \\ 0 \end{bmatrix}$$

Or in matrix/vector notation

$$[B]\vec{F}=\vec{R}$$

Note that

$$\theta_2 = 70^{\circ}$$
 $L_2 = 1.5^{\circ}$

$$\theta_3 = 110^{\circ}$$

$$\theta_{\rm w} = 62^{\circ}$$
 $L_{\rm w} = 6.5^{\circ}$

What Force for 10lbs Weight?

```
>> rad2 = 70*pi/180;
>> rad3 = 110*pi/180;
>> radw = 62*pi/180;
>> L2 = 1.5;
>> Lw = 6.5;
>> W = 10;
>> Bmat = ...
  [ 1 0 cos(rad3) 0 ;...
    0 -1 sin(rad3) 0 ;...
    0 0 L2*sin(rad3-rad2) 0 ;...
    0 l -sin(rad3) l ];
>> Rvec = ...
   [ 0 ; W ; Lw*cos(radw)*W ; 0 ];
>> Fvec = Bmat^(-1) *Rvec
```

Fvec =

10.8247 19.7406

31.6493

10.0000

So the two pistons need a combined force of 32 lbs to lift a bag of sugar in the

bin.

What about other Weights?

- . To try many weights, we need an m-file to call many times
- « Call the m-file

force.m

```
function Fvector = force(W)
% returns the reaction and
% piston forces for a given
% load, at the initial position.
r2 = 70*pi/180;
r3 = 110*pi/180;
rw = 60*pi/180;
L2 = 1.5;
Lw = 6.5;
Bmatrix = ...
  [ 1 0 cos(r3) 0 ;...
    0 -1 sin(r3) 0 ;...
    0 0 L2*sin(r3-r2) 0 ;...
    0 1 -sin(r3) 1 ];
Rvector = ...
 [ 0 ; W ; Lw*cos(rw)*W ; 0 ];
Fvector = Bmatrix^(-1)*Rvector;
```

ME Tools Call the m-file

Expand the m-file

- . Read into the m-file rad2, rad3, radw as a vector ang
- Try

```
anq(1) = 70*pi/180
ang(2) = 70*pi/180
ang(3) = 62*pi/180
```

What happened? Why?

```
function Fvector = force(W,ang)
% returns the reaction and
% piston forces for a given
% load W, at a given angular
% position ang = [al a2 a3].
r2 = ang(1);
r3 = ang(2);
rw = ang(3);
L2 = 1.5;
Lw = 6.5;
Bmatrix = ...
 [ 1 0 cos(r3) 0 ;...
    0 -1 sin(r3) 0 ;...
    0 0 L2*sin(r3-r2) 0 ;...
    0 1 -sin(r3) 1 ];
Rvector = ...
[ 0 ; W ; Lw*cos(radw)*W ; 0 ];
Fvector = Bmatrix^(-1)*Rvector;
```

The Matrix Determinant

```
function Fvector = force(W,ang)
r2 = ang(1);
r3 = ang(2);
rw = ang(3);
L2 = 1.5;
Lw = 6.5;
Bmatrix = ...
  [ 1 0 cos(r3) 0 ;...
    0 -1 sin(r3) 0 ;...
    0 0 L2*sin(r3-r2) 0 ;...
    0 1 -sin(r3) 1 ];
disp('The determinant is ');
disp(det(Bmatrix));
Rvector = ...
[ 0 ; W ; Lw*cos(w)*W ; 0 ];
Fvector = Bmatrix^(-1)*Rvector;
```

```
>> force(10,[70*pi/180,...
   70*pi/180,60*pi/180])
The determinant is
Warning: Matrix is singular to
working precision.
f =
   NaN
   NaN
   NaN
  NaN
```

- B is singular
- So even infinately large forces cannot support the bin at these angles.

Plotting Data in Matlab

Matlab plots data, not functions

- If you have a vector pair of data, plot it
- >> load('data.dat') >> plot (data(:,1),... data(:,2))
- If you have a function to plot, first you must generate data that represents it

```
>> Xvec = 0:0.01:4;
>> Yvec = sin(Xvec);
>> plot(Xvec, Yvec)
```


Cool Time Data

Measure Temperature at regular time intervals

I (mm)	r (F)	I (mm)	F (F)	I(mm)	7 (8)	I (mm)	r (F)	I (mm)	7 (F)	I(mm)	r (F)
0)1	852	450	248	l aer	154.4	1229	118.4	1 1700	28.2	21.17	312
099	819.4	481	240.8	339	152.8	19.00	114.2	17,17	28.2	21.99	312
050	590	439	229.5	900	152.8	19,17	119	1799	28.2	2150	312
081	559 A	500	290	977	149	19.99	1112	1750	25	2181	38
032	592 A	377	224.8	999	147.2	1950	119	1757	95	21.29	38
100	505 A	599	222.2	950	145.4	1981	119	1729	95	22.00	38
1)1	439.2	550	219.2	981	149.8	1929	111.2	ممدد ا	99.2	22.17	35
199	480 4	587	219.2	939	141.2	14.00	109 A	12,17	992	22.99	34.2
150	423.3	539	210.2	1000	140	14,17	109 A	1333	992	2250	34.2
181	422.5	800	205.5	10,17	140	14.99	101.5	1350	99.2	2281	34.2
132	408.4	877	122 A	10.99	198.2	1450	101.5	1881	91.4	22.89	34.2
200	990.2	899	1918	1050	194.8	14.81	105.2	1889	99.2	29.00	34.2
2) (253.5	850	120.2	10.01	198 A	14.29	105.2	19.00	21.4	29.17	34.2
299	281 A	887	190 A	1029	194.5	1500	1 Dr	19,17	91.4	29.99	32.A
250	250.5	8 3 2	120.2	11,00	191	15.17	1 DF	1999	91.4	2950	32.A
281	998	r 00	121.4	11,17	191	15.99	I Dr	1950	21.4	29.51	32.A
232	921.2	177	1.75	11.99	125.5	1550	102.2	1981	21.4	29.89	32.A
200	918.4	199	174.2	1150	125.5	1587	102.2	1929	39.5	24.00	32.A
9)1	201 A	750	114.2	11.55	125.5	15.89	100 /	20.00	325	24,17	32.A
999	902	rer	172.4	1122	125.5	18.00	100 A	20.17	39.5	24.99	32.A
250	294.2	F 22	163.2	12.00	129.2	18,17	100 A	20.99	312	24.50	32.A
281	234	300	180.2	12.17	129.2	18.99	100 A	2050	35	24.81	805
232	275	877	100 A	12.99	122	1850	23.5	20.5	312	24.39	805
400	200	3 9 9	158	1250	122	1881	23.5	20.89	312	25.00	30.5
4)1	250.5	350	156.2	1251	120.2	1822	98.2	2100	ara	25.17	202

ME Tools Plotting Data

Copy the temperature data file from the 2.670 locker athena% cp /mit/2.670/Computers/matlab/temp.dat ~/matlab

Read data from a file into matlab 700. >> load('temp.dat'); >> tvec=temp(:,1); >> TmpDatavec=temp(:,2); Now plot the measured data >> plot(tvec,TmpDatavec) Hmmm.... Looks exponential.

Why an Exponential Look?

The plot looks like an exponential decay...

Convection Cooling
$$\Rightarrow q = hA(T(t) - T_{\infty})$$
 Lumped Mass $\Rightarrow -q = mc_p \frac{dT}{dt}$

$$\frac{dT}{dt} = \frac{-hA}{mc_p} \Big(T(t) - T_{\infty} \Big)$$

ME Tools Convective Cooling

Transform variable $D = T - T_{\infty}$ $\dot{D} = \dot{T}$

$$D = T - T_{m}$$

$$\dot{D} = \dot{T}$$

$$\frac{dD}{dt} = \frac{-hA}{mc_p}D \quad \Longrightarrow \quad \frac{-hA}{mc_p}dt = \frac{dD}{D}$$

 $\int\limits_{0}^{t} \frac{-hA}{mc_{y}} dt = \int\limits_{D_{t}}^{D_{t}} \frac{dD}{D} \quad \Longrightarrow \quad \frac{-hAt}{mc_{y}} = \ln\biggl(\frac{T-T_{w}}{T_{0}-T_{w}}\biggr)$

So

$$\boxed{T = T_{\omega} + \left(T_{\mathrm{D}} - T_{\omega}\right) e^{\left(\frac{-hA}{mc_{\mu}}\right)t}}$$

ME Tools Curve Fitting

 Matlab only fits polynomials to data....

>> polyfit(Xvec,Yvec,1)

fits a least squares best line

$$y_{predicted} = \beta_0 + \beta_1 x$$

to a dataset

$$\left[ec{x}, ec{y}_{ ext{measured}}
ight]$$

2.670 ME Tools

Transform Data to a Linear Form

❖ Our data is exponential, not linear
So take the log(.) of the data

2.670 ME Tools

w

Plot the Ln Data

Just to convince ourselves, lets plot the log(.) data.

Find the Least Squares Fit

Find the coefficients that least squares best fit a line (a linear polynomial):

>> beta=polyfit(tvec,lnDeltaDatavec,1) beta =

Which tells us
$$\ln \left(T(t)-65\right)=5.8-.1\,3t$$
 or
$$T(t)=65+330\,e^{-13t}$$

Do you believe this least squares best fit model?

Plot both Data and Line

Lets check by visualizing the data.

```
>> Fitvec = ...
   beta(1) *tvec ...
   + beta(2);
>> plot(tvec,...
   lnDeltaDatavec,...
   'r.',...
   tvec,...
   Fitvec, 'b')
```

Do you believe the model?

Formatting Plots

Add titles, axis labels, and legends with plot formatting commands

```
>> title('Ln(Delta Temp) vs. time');
```

- >> xlabel('time (min)');
- >> ylabel('Ln(Delta Temperature)');

The least squares best fit expoential model to the data is then

$$T = 65 + 330e^{-.13t}$$

How long until we can grab our engine?

- the time prediction?

2.670 ME Tools

33