Gear geometry

Consider the curve generated by unwrapping a string from around a disk of radius R_{B}. The end of the string will trace an involute curve.

To mathematically define an involute consider the following:
$\begin{array}{lr}\mathrm{R}_{\mathrm{C}}=\text { length_of_string_unwrapped } & \tan (\phi)=\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{B}}} \\ \text { tangent with disk at one end }\end{array}$
$R_{B}=$ radius_of_generating_cylinder
$\phi=$ pressure_angle direction of loading perpendicular along
$\theta=$ position_paramter_associate_with_involute

$$
\mathrm{E}=\theta+\phi
$$

point at loose end of curve is at polar coordinates R, θ
$\mathrm{E}=$ interim_variable_sum_of_angles
length of arc = radius * angle
$R_{C}=E \cdot R_{B}$
$\Rightarrow \quad \frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{B}}}=\mathrm{E}=\theta+\phi \quad$ substitute above $\ldots \quad \tan (\phi)=\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{B}}}=\mathrm{E}=\theta+\phi \quad \tan (\phi)=\theta+\phi$
$\theta=\tan (\phi)-\phi \quad$ basic definition for angular coordinate of involute curve for any ϕ. Curve is generated by setting ϕ to range from 0 to max
from geometry ...

$$
\cos (\phi)=\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}} \quad \Rightarrow \quad \mathrm{R}=\frac{\mathrm{R}_{\mathrm{B}}}{\cos (\phi)} \quad \begin{aligned}
& \text { the other coordinate, } \mathrm{R}=\text { pitch_radius } \\
& \text { when } \phi=\text { pressure angle for design }
\end{aligned}
$$

involute curve

$$
\phi:=40 \mathrm{deg} \quad \text { pressure_angle } \quad \theta 1:=0,0.01 . .2 \cdot \pi \quad 2 \cdot \pi _ \text {range_variable }
$$

$$
\theta:=\tan (\phi)-\phi \quad \text { involute }(\phi) \quad \theta=8.077 \mathrm{deg} \quad \text { R_rad }:=0,0.1 . .2 \quad \phi 1 _ \text {max: }=0.85 \mathrm{rad}
$$

$\mathrm{R}_{\mathrm{B}}:=1 \quad$ in this case we will define the base radius
calculate the pitch radius $\quad R_{P}:=\frac{R_{B}}{\cos (\phi)} \quad R_{P}=1.305 \quad \begin{aligned} & \text { N.B. positive directions for } \theta \\ & \text { and } \phi \text { are opposite }\end{aligned}$
the involute is constructed by varying a dummy pressure angle over a range - equivalent to unwrapping the string from the disk.

$$
\phi 1:=0,0.01 . . \phi 1 _m a x \text { range_variable_for_construction }
$$

$$
\theta 2(\phi 1):=\tan (\phi 1)-\phi 1 \quad \mathrm{R} 2(\phi 1):=\frac{\mathrm{R}_{\mathrm{B}}}{\cos (\phi 1)}
$$

a tangent is drawn from the pressure angle thru the involute at the pitch radius (perpendicular to involute)

$$
\text { R_tan := } \left.\begin{array}{lc}
\mathrm{R}_{\mathrm{P}} & \frac{\pi}{2} \\
\mathrm{R}_{\mathrm{B}} & \frac{\pi}{2}-\phi
\end{array}\right) \quad \text { draws the tangent } \quad \text { R_tan }=\left(\begin{array}{cc}
1.305 & 1.571 \\
1 & 0.873
\end{array}\right)
$$

add in an involute at a nominal pressure angle of 50 deg and then rotate it by the difference between pressure angles. Notice it overlays the first tangent.

$$
\begin{aligned}
& \phi 4:=50 \operatorname{deg} \quad \theta 4:=\tan (\phi 4)-\phi 4 \quad \theta 4=18.282 \operatorname{deg} \quad(\phi 4-\phi) \cdot \mathrm{k} 4 \quad \text { does the rotation with } \mathrm{k} 4=1 \\
& \text { R_tan1 }:=\left[\begin{array}{cc}
\frac{\mathrm{R}_{\mathrm{B}}}{\cos (\phi 4)} & \frac{\pi}{2}+(\phi 4-\phi) \cdot \mathrm{k} 4 \\
\mathrm{R}_{\mathrm{B}} & \frac{\pi}{2}-\phi 4+(\phi 4-\phi) \cdot \mathrm{k} 4
\end{array}\right] \quad \text { R_tan } 1=\left(\begin{array}{cc}
1.556 & 1.745 \\
1 & 0.873
\end{array}\right)
\end{aligned}
$$

the resulting figure is as follows:

tooth construction (design)

at this point we know

$$
\mathrm{R}_{\mathrm{B}}=\text { radius_of_generating_cylinder }
$$

$$
\phi=\text { pressure_angle }
$$

$$
\mathrm{R}=\frac{\mathrm{R}_{\mathrm{B}}}{\cos (\phi)} \quad \begin{aligned}
& \text { radius as function of pressure angle } \\
& =\text { pitch radius at design pressure angle }
\end{aligned}
$$

define

$$
\text { CP = circular_pitch }=\frac{\text { circumference_of_pitch_diameter }}{\text { number_of_teeth }}
$$

set pressure angle $\quad \nless==25 d e g \quad$ pressure_angle
DP :=10 diametral_pitch $=\mathrm{DP}=\frac{\text { number_of_teeth }}{\text { pitch_diameter }}=\frac{\mathrm{N}_{\mathrm{G}}}{2 \cdot \mathrm{R}_{\mathrm{G}}}=\frac{\mathrm{N}_{\mathrm{P}}}{2 \cdot \mathrm{R}_{\mathrm{P}}} \quad \quad$ CP $\cdot \mathrm{DP}=\pi \quad$ an aside \ldots
$\mathrm{N}_{\mathrm{P}}:=20$ number_of_pinion_teeth $\mathrm{N}_{\mathrm{G}}:=30$ number_of_gear_teeth
$\mathrm{BL}:=0.01 \begin{aligned} & \text { backlash = 0.01 beyond scope, } \quad \mathrm{CTT}_{\mathrm{P}}:=\frac{\pi}{\mathrm{DP} \cdot 2}-\frac{\mathrm{BL}}{2} \quad \text { circular_tooth_thickness } \\ & \text { depends on DP }\end{aligned}$
calculate pitch and base radii
$\mathrm{CTT}_{\mathrm{G}}:=\mathrm{CTT}_{\mathrm{P}} \quad$ same on pitch diameter
$\mathrm{R}_{\mathrm{G}}:=\frac{\mathrm{N}_{\mathrm{G}}}{\mathrm{DP}} \cdot \frac{1}{2} \quad \mathrm{R}_{\mathrm{G}}=1.5 \quad$ pitch_radius_gear $\quad \mathrm{R}_{\mathrm{BG}}:=\mathrm{R}_{\mathrm{G}} \cdot \cos (\phi) \quad \mathrm{R}_{\mathrm{BG}}=1.359 \quad$ base_diameter_gear
$\mathrm{R}_{\mathrm{R}}:=\frac{\mathrm{N}_{\mathrm{P}}}{\mathrm{DP}} \cdot \frac{1}{2} \quad \mathrm{R}_{\mathrm{P}}=1 \quad$ pitch_radius_pinion $\quad \mathrm{R}_{\mathrm{BP}}:=\mathrm{R}_{\mathrm{P}} \cdot \cos (\phi) \quad \mathrm{R}_{\mathrm{BP}}=0.906 \quad$ base_diameter_pinion
$\underset{\sim}{C}:=R_{G}+R_{P} \quad C=2.5 \quad$ center_distance
$\underset{\mathrm{R}}{\mathrm{R}}:=\frac{\mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{\mathrm{P}}} \quad \mathrm{R}=1.5 \quad$ gear_ratio \quad i.e. gear ration is ratio of pitch radii (or diameters or number of teeth)
$\mathrm{CTT}_{\mathrm{P} 2}=2 \cdot \mathrm{R}_{\mathrm{P} 2} \cdot\left(\frac{\mathrm{CTT}_{\mathrm{P}}}{2 \cdot \mathrm{R}_{\mathrm{P} 1}}+\operatorname{inv}(\phi 1)-\operatorname{inv}(\phi 2)\right) \quad$ derived from involute geometry defining function inv
at R_{2} point on thickness of tooth B is

$$
\mathrm{B}=\theta 1+\frac{1}{2} \cdot \frac{\mathrm{CTT}_{1}}{\mathrm{R}_{1}}-\theta 2
$$

$$
\operatorname{inv}(\phi):=\tan (\phi)-\phi
$$

derived below ...

figure 2.10 page 31 Lynwander
reversed and rotated - values at pitch radius

$$
\begin{aligned}
& \mathrm{A}=\theta 1+\frac{1}{2} \cdot \frac{\mathrm{CTT}_{1}}{\mathrm{R}_{1}} \\
& \mathrm{CTT}_{1}=\text { circular_tooth_thickness } \\
& \phi=\text { pressure_angle_design } \\
& \theta 1=\text { involute_of_design_pressure_angle } \\
& \mathrm{R}_{1}=\text { pitch_radius }=\frac{\mathrm{R}_{\mathrm{B}}}{\cos (\phi)}
\end{aligned}
$$

figure 2.10 page 31 Lynwander reversed and rotated

$$
\begin{aligned}
& \text { here consider varying } \phi \text { from } 0 \\
& \text { to a value }>\text { design angle }=\phi 2 \\
& \theta 2=\text { involute_of } _\phi 2 \\
& B(\phi 2)=A-\theta 2 \\
& R_{2}=\frac{R_{B}}{\cos (\phi 2)} \\
& \text { so .. } \quad B=\theta 1+\frac{1}{2} \cdot \frac{C T T_{1}}{R_{1}}-\theta 2
\end{aligned}
$$

and points on tooth surface are $\mathrm{R} 2, \mathrm{~B}$
additional definitions addendum dedendum root_diameter tooth profile ... with pitch radius and base radius shown ...

Dplot set up

pinion profile

gear profile (scale is changed)

move the pinion out to C, rotating it by π and offsetting both by half tooth thickness
$\theta _$plot ${ }_{G}\left(R_{G}\right)$

\square geometry to shift circle

\square plot set up

