Supplement for Repairable System Reliability

PDF $=$ probability_density_function $=f(t)$
CDF $=$ cumulative_distribution_function $=F(t)=\int_{0}^{t} f(x) d x$

8.1.2.2 Reliability or Survival function

Reliability_function = probability_unit_survives_beyond_t

$$
\mathrm{R}(\mathrm{t})=1-\mathrm{F}(\mathrm{t}) \quad \text { or } \ldots \quad \mathrm{F}(\mathrm{t})=1-\mathrm{R}(\mathrm{t})
$$

8.1.2.3 Failure (or Hazard) rate

$h(t)=$ failure_rate $=\frac{f(t)}{1-F(t)}=\frac{f(t)}{R(t)} \quad$ conditional probability
therefore ...

$$
\mathrm{f}(\mathrm{t})=\mathrm{R}(\mathrm{t}) \cdot \mathrm{h}(\mathrm{t})
$$

now ...

$$
\begin{aligned}
& \mathrm{R}(\mathrm{t})=1-\mathrm{F}(\mathrm{t}) \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~F}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{R}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \\
& \mathrm{h}(\mathrm{t})=\frac{\mathrm{f}(\mathrm{t})}{\mathrm{R}(\mathrm{t})}=-\frac{\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{R}(\mathrm{t})}{\mathrm{R}(\mathrm{t})}=-\frac{\mathrm{d}}{\mathrm{dt}} \ln (\mathrm{R}(\mathrm{t}))
\end{aligned}
$$

integrate from 0 to t

$$
\int_{0}^{\mathrm{t}} \mathrm{~h}(\mathrm{x}) \mathrm{dx}=-\ln (\mathrm{R}(\mathrm{t}))
$$

exponentiate ..

$$
R(t)=e^{-\int_{0}^{t} h(x) d x}
$$

$$
f(t)=R(t) \cdot h(t)=h(t) \cdot e^{-\int_{0}^{t} h(x) d x}
$$

therefore ...
now .. if assume (observe) failure rate $h(t)=$ constant $=\lambda$
$h(t):=\lambda$

$$
\begin{aligned}
& f(t):=h(t) \cdot e^{-} \int_{0}^{t} h(x) d x \\
& F(t):=\int_{0}^{t} \lambda \cdot e^{(-\lambda) \cdot x} d x \rightarrow\left[-e^{(-\lambda) \cdot t}\right]+1 \quad F(t):=1-e^{-\lambda \cdot t}
\end{aligned}
$$

have exponential assumption of probability of failure times
exponential pdf and cdf example
PDF_of_time_to_next_failure $=\mathrm{f}(\mathrm{t})=\lambda \cdot \mathrm{e}^{-\lambda \cdot \mathrm{t}} \quad \lambda:=\frac{1}{1000} \quad \mathrm{t}:=0 . .10000 \quad \mathrm{f}(\mathrm{t}):=\lambda \cdot \mathrm{e}^{-\lambda \cdot \mathrm{t}}$

$$
\mathrm{CDF}=\mathrm{F}(\mathrm{t})=1-\mathrm{e}^{-\lambda \cdot \mathrm{t}}=\text { CDF_of_waiting_time_to_next_failure } \quad \mathrm{F}(\mathrm{t}):=\left(1-\mathrm{e}^{-\lambda \cdot \mathrm{t}}\right)
$$

or .. CDF of "interarrival" time between failures
cumulative probability density of time to next failure (lambda $=1 / 1000$)

Δ exponential pdf and cdf example
\square reset variables
interpret time to failure as a waiting time, it can be shown that this can be represented as a Poisson process, if a component which fails is immediately replaced with a new one having the same failure rate λ. Some results from this observation:
mean_waiting_ttime_between_successive_failures $=\frac{1}{\lambda}=$ MTBF

Reliability or Survival function

$$
\mathrm{R}(\mathrm{t}):=1-\mathrm{F}(\mathrm{t})
$$

Reliability_function = probability_unit_survives_beyond_t

$$
R(t) \rightarrow e^{(-\lambda) \cdot t}
$$

e.g. if component has a failure rate of $0.05 / 1000$ hours, probability that it will survive at least 10,000 hrs is given by:

$$
e^{\frac{-0.05}{1000} \cdot 10000}=0.607
$$

n components in series

if a system consists of n components in series, with respective failure rates $\lambda_{1}, \lambda_{2} \ldots \lambda_{n}$

$$
\begin{aligned}
& \operatorname{Rs}(\mathrm{t})= \prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{i}} \cdot \mathrm{t}}=\mathrm{e}^{-\sum_{\mathrm{i}=1}^{\mathrm{n}} \lambda_{\mathrm{i} \cdot} \cdot \mathrm{t}} \quad \begin{array}{l}
\text { so it also is an exponential distribution } \ldots \\
\text { and the MTBF for the system is: }
\end{array} \\
& \text { MTBF }_{\text {series_system }}=\frac{1}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \lambda_{\mathrm{i}}}=\frac{1}{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\frac{1}{M T B F_{i}}\right)}
\end{aligned}
$$

for a parallel system

\ldots with respective failure rates $\lambda_{1}, \lambda_{2} \ldots \lambda_{n}$
in this case we need to deal with "unreliabilities"

$$
\mathrm{F}_{\mathrm{i}}=1-\mathrm{R}_{\mathrm{i}} \quad \text { is probability component } \mathrm{i} \text { will fail }
$$

probability_all_will_fail $=$ unreliability $=F_{p}=\prod_{i=1}^{n} F_{i}$
and probability of survival $=R_{p}(t) \quad R_{p}(t)=1-F_{p}(t)=1-\prod_{i=1}^{n}\left[F_{i}(t)\right]=1-\prod_{i=1}^{n}\left[1-R_{i}(t)\right]$
in this case; exponential probability of failure

$$
\begin{aligned}
\mathrm{F}_{\mathrm{p}}(\mathrm{t}) & =\prod_{\mathrm{i}=1}^{\mathrm{n}}\left[\mathrm{~F}_{\mathrm{i}}(\mathrm{t})\right]=\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1-\mathrm{e}^{-\lambda_{\mathrm{i}} \cdot \mathrm{t}}\right) \quad \text { this will not show exponential distribution } \ldots \\
\mathrm{h}_{\mathrm{p}}(\mathrm{t}) & =\frac{\mathrm{f}_{\mathrm{p}}(\mathrm{t})}{\mathrm{R}_{\mathrm{p}}(\mathrm{t})}=\frac{\frac{d}{d t} \mathrm{~F}_{\mathrm{p}}(\mathrm{t})}{R_{\mathrm{p}}(\mathrm{t})} \quad \text { difficult to evaluate, but notice at least it is } \mathrm{f}(\mathrm{t}) .
\end{aligned}
$$

$R_{p}(t)$ difficult to obtain in general, but when all components have same failure rate

$$
\begin{aligned}
& R_{p}(t)=1-\prod_{i=1}^{n}\left[1-R_{i}(t)\right]=1-\prod_{i=1}^{n}\left(1-e^{-\lambda \cdot t}\right)=1-\left(1-e^{-\lambda \cdot t}\right)^{n} \\
& \text { n_choose_k(n,k) }:=\frac{\mathrm{n}!}{\mathrm{k}!\cdot(\mathrm{n}-\mathrm{k})!} \quad \text { binomial coefficient } \\
& 1-\left(1-e^{-\lambda \cdot t}\right)^{\mathrm{n}}=1-\left(1-\mathrm{n} \text { _choose_k}(\mathrm{n}, 1) \cdot \mathrm{e}^{-\lambda \cdot \mathrm{t}}+\mathrm{n} _ \text {choose_ } \mathrm{k}(\mathrm{n}, 1) \cdot \mathrm{e}^{-2 \lambda \cdot \mathrm{t}}-\ldots\right) \\
& R_{p}(t)=n _c h o o s e _k(n, 1) \cdot e^{-\lambda \cdot t}-n _ \text {choose_k(n,2)} \cdot \mathrm{e}^{-\lambda \cdot t}+\ldots \ldots(-1)^{n-1} \cdot e^{-n \cdot \lambda \cdot t}
\end{aligned}
$$

binomial theorem from mathworld.wolfram.com/BinomialTheorem.html
it can be shown see reference page 460
after differentiating to find $f_{p}(t) \quad f_{p}(t)=\frac{d}{d t} R_{p}(t)$
and then calculating the mean $\left(M B T F_{\text {parallel }}\right)$

$$
\mathrm{MBTF}_{\text {parallel }}=\frac{1}{\alpha} \cdot\left(1+\frac{1}{2}+\ldots \ldots \ldots \ldots . .+\frac{1}{\mathrm{n}}\right)
$$

e.g. if use two identical components in parallel

$$
\mathrm{MBTF}_{\text {parallel }}=\frac{1}{\alpha} \cdot \frac{3}{2} \quad \text { increase of } 50 \% \text { not double } \quad \sum_{\mathrm{k}=1}^{4} \frac{1}{\mathrm{k}}=2.083 \quad \text { four to double }
$$

another example if time permits on board

