Supplement for Repairable System Reliability

PDF = probability_density_function = f(t)

CDF = cumulative_distribution_function = F(t) =
$$\int_0^t f(x) dx$$

8.1.2.2 Reliability or Survival function

Reliability_function = probability_unit_survives_beyond_t

$$R(t) = 1 - F(t)$$
 or ... $F(t) = 1 - R(t)$

8.1.2.3 Failure (or Hazard) rate

 $h(t) = failure_rate = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{R(t)}$ conditional probability

therefore ... $f(t) = R(t) \cdot h(t)$

now ...

$$R(t) = 1 - F(t) \qquad \frac{d}{dt}F(t) = -\frac{d}{dt}R(t) = f(t)$$

$$h(t) = \frac{f(t)}{R(t)} = -\frac{\frac{d}{dt}R(t)}{R(t)} = -\frac{d}{dt}\ln(R(t))$$

integrate from 0 to t

$$\int_0^t h(x) \, dx = -\ln(R(t))$$
$$-\int_0^t h(x) \, dx$$
$$R(t) = e^{-\int_0^t h(x) \, dx}$$

exponentiate ..

therefore ...

 $-\int_{0}^{t} h(x) dx$ f(t) = R(t) · h(t) = h(t) · e

now .. if assume (observe) failure rate $h(t) = constant = \lambda$

$$h(t) := \lambda$$

$$f(t) := h(t) \cdot e^{-\int_{0}^{t} h(x) dx}$$

$$f(t) := h(t) \cdot e^{-\lambda \cdot x} dx \rightarrow \left[-e^{(-\lambda) \cdot t}\right] + 1 \quad F(t) := 1 - e^{-\lambda \cdot t}$$

have exponential assumption of probability of failure times

Reference: Probability and Reliability for Engineers, Miller, TA340.M648 1985 primarily chapter 15 NIST e-book Engineering Statistics Handbook, sections labelled exponential pdf and cdf example

 $PDF_of_time_to_next_failure = f(t) = \lambda \cdot e^{-\lambda \cdot t} \qquad \lambda := \frac{1}{1000} \qquad t := 0 .. 10000 \qquad f(t) := \lambda \cdot e^{-\lambda \cdot t}$

probability density of time to next failure (lambda = 1/1000)

cumulative probability density of time to next failure (lambda = 1/1000)

exponential pdf and cdf example

reset variables

interpret time to failure as a waiting time, it can be shown that this can be represented as a Poisson process, if a component which fails is immediately replaced with a new one having the same failure rate λ . Some results from this observation:

mean_waiting_ttime_between_successive_failures = $\frac{1}{\lambda}$ = MTBF

Some results for exponential model

Reliability or Survival function R(t) := 1 - F(t)

Reliability_function = probability_unit_survives_beyond_t

$$\mathbf{R}(\mathbf{t}) \to \mathbf{e}^{(-\lambda) \cdot \mathbf{t}}$$

e.g. if component has a failure rate of 0.05/1000 hours, probability that it will survive at least 10,000 hrs is given by:

 $e^{\frac{-0.05}{1000} \cdot 10000} = 0.607$

n components in series

if a system consists of n components in series, with respective failure rates $\lambda_1, \lambda_2 \dots \lambda_n$

$$Rs(t) = \prod_{i=1}^{n} e^{-\lambda_i \cdot t} = e^{-\sum_{i=1}^{n} \lambda_i \cdot t}$$

so it also is an exponential distribution ... and the MTBF for the system is:

$$MTBF_{series_system} = \frac{1}{\sum_{i=1}^{n} \lambda_i} = \frac{1}{\sum_{i=1}^{n} \left(\frac{1}{MTBF_i}\right)}$$

for a parallel system

... with respective failure rates $\lambda_1, \lambda_2 \ldots \lambda_n$ in this case we need to deal with "unreliabilities"

 $F_i = 1 - R_i$ is probability component i will fail

probability_all_will_fail = unreliability = $F_p = \prod_{i=1}^{n} F_i$

and probability of survival $=R_{p}(t)$

$$R_p(t) = 1 - F_p(t) = 1 - \prod_{i=1}^{n} [F_i(t)] = 1 - \prod_{i=1}^{n} [1 - R_i(t)]$$

in this case; exponential probability of failure

$$\begin{split} F_p(t) &= \prod_{i=1}^n \left[F_i(t) \right] = \prod_{i=1}^n \left(1 - e^{-\lambda_i \cdot t} \right) \\ h_p(t) &= \frac{f_p(t)}{R_p(t)} = \frac{\frac{d}{dt} F_p(t)}{R_p(t)} \qquad \text{difficul} \end{split}$$

this will not show exponential distribution ...

difficult to evaluate, but notice at least it is f(t).

 $\mathsf{R}_\mathsf{p}(t)$ difficult to obtain in general, but when all components have same failure rate

binomial theorem from mathworld.wolfram.com/BinomialTheorem.html

it can be shown see reference page 460

after differentiating to find
$$f_p(t)$$
 $f_p(t) = \frac{d}{dt}R_p(t)$

and then calculating the mean (MBTF $_{\mbox{parallel}}$)

$$MBTF_{parallel} = \frac{1}{\alpha} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$$

e.g. if use two identical components in parallel

$$MBTF_{parallel} = \frac{1}{\alpha} \cdot \frac{3}{2}$$
 increase of 50% not double

$$\sum_{k=1}^{4} \frac{1}{k} = 2.083 \qquad \text{four to double}$$

another example if time permits on board