control volume in uniform state, uniform flow process USUF, irreversible $Q_{c . v}$. and $W_{c . v}$.


FIGURE 8.1
A uniform-state, uniform-flow process.
what if process were reversible, how much work would have been done if the process had been reversible


FIGURE 8.2
A reversible process for the same change of state as in Fig. 8.1.

$$
\mathrm{W}_{\text {rev }}=\mathrm{W}_{\mathrm{c}_{-} \mathrm{v} \_ \text {rev }}+\mathrm{W}_{\mathrm{c}} \quad \begin{align*}
& \text { reversible heat transfer takes place through reversible heat engine }  \tag{8.1}\\
& \text { with output } \mathrm{W}_{\mathrm{c}}
\end{align*}
$$

$\mathrm{I}=$ irreversibility $=\mathrm{W}_{\mathrm{rev}}-\mathrm{W}_{\mathrm{CV}}$
first law for uniform state, uniform process ... from first_law.mcd

## uniform state, uniform flow process (USUF)

$Q_{C_{-} v_{-} r e v}+\sum_{n}\left[m_{i_{n}} \cdot\left(h_{i}+\frac{V_{i}^{2}}{2}+g \cdot z_{i}\right)\right]=\sum_{n}\left[m_{e_{n}} \cdot\left(h_{e}+\frac{V_{e}^{2}}{2}+g \cdot z_{e}\right)\right] \ldots$

$$
+m_{2} \cdot\left(u_{2}+\frac{v_{2}^{2}}{2}+g \cdot z_{2}\right)-m_{1} \cdot\left(u_{1}+\frac{v_{1}^{2}}{2}+g \cdot z_{1}\right)+W_{c_{-} v_{-} r e v}
$$

for the reversible heat engine $\ldots \quad W_{C}=Q_{0}-Q_{C_{-} v \_r e v}$
from second law $\Delta S \quad$ for $Q_{0}$ and $Q_{C_{-} v \text { rev }}$ are the same, $Q_{0}$ at constant temperature

$$
\begin{aligned}
& \Delta \mathrm{S}=\Delta \mathrm{S}_{\mathrm{C}_{-} \mathrm{v} \_ \text {rev }} \quad \mathrm{Q}_{\mathrm{O}}=\mathrm{T}_{\mathrm{o}} \cdot \Delta \mathrm{~S} \quad \Delta \mathrm{~S}_{\mathrm{c}_{-} \mathrm{v}^{\prime} \text { rev }}=\int_{0}^{\mathrm{t}} \frac{\mathrm{Q}^{\text {dot }}{ }_{\mathrm{c} \_\mathrm{v} \_ \text {rev }}}{\mathrm{T}} \mathrm{dt} \\
& \text { that is express as integral of rate } \\
& \text { uniform state }=>\text { T constant in c.v. }
\end{aligned}
$$


also for USUF from second law

$$
m_{2} \cdot s_{2}-m_{1} \cdot s_{1}+\sum_{n}\left(m_{e} \cdot s_{e}\right)-\sum_{n}\left(m_{i} \cdot s_{i}\right)=\int_{0}^{\mathrm{t}} \frac{\mathrm{Q}^{2} \text { dot }_{c_{-}} \mathrm{v}}{\mathrm{~T}} \mathrm{dt} \quad \begin{aligned}
& (7.56)=\text { when } \\
& \text { reversible (8.5) }
\end{aligned}
$$

substituting (8.5) into (8.4) $\ldots \quad W_{C}=Q_{0}-Q_{C_{-} v_{-} r e v}=T_{0} \cdot\left[m_{2} \cdot s_{2}-m_{1} \cdot s_{1}+\sum_{n}\left(m_{e} \cdot s_{e}\right)-\sum_{n}\left(m_{i} \cdot s_{i}\right)\right]-Q_{C_{-} v_{-} r e v}$
so ... the bottom line, substitute (8.3) rearranged and (8.6) into (8.1) $\quad \mathrm{W}_{\text {rev }}=\mathrm{W}_{\text {c_v_rev }}+\mathrm{W}_{\mathrm{c}}$

$$
\begin{align*}
W_{r e v}= & Q_{C_{-} v_{-} r e v}+\sum_{n}\left[m_{i_{n}} \cdot\left(h_{i}+\frac{V_{i}^{2}}{2}+g \cdot z_{i}\right)\right]-\left[\sum_{n}\left[m_{e_{n}} \cdot\left(h_{e}+\frac{V_{e}^{2}}{2}+g \cdot z_{e}\right)\right] \ldots\right. \\
& +-\left[m_{2} \cdot\left(u_{2}+\frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)-m_{1} \cdot\left(u_{1}+\frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)\right] \ldots  \tag{8.3}\\
& +T_{0} \cdot\left[m_{2} \cdot s_{2}-m_{1} \cdot s_{1}+\sum_{n}^{\left.\sum\left(m_{e} \cdot s_{e}\right)-\sum_{n}\left(m_{i} \cdot s_{i}\right)\right]-Q_{C_{-} v_{-} r e v}} .\right. \tag{8.6}
\end{align*}
$$

$Q_{C_{-} \text {__rev }}$ cancels and rearranging (moving $T_{o}$ and $s$ terms into mass flow terms) ...
reversible work (maximum) of a control volume that exchanges heat with the surroundings at To

$$
\begin{align*}
W_{r e v}= & \sum_{n}\left[m_{i_{n}} \cdot\left(h_{i}-T_{o} \cdot s_{i}+\frac{V_{i}^{2}}{2}+g \cdot z_{i}\right)\right]-\left[\sum_{n}\left[m_{e_{n}} \cdot\left(h_{e}-T_{0} \cdot s_{e}+\frac{V_{e}^{2}}{2}+g \cdot z_{e}\right)\right]\right] \ldots  \tag{8.7}\\
& +-\left[m_{2} \cdot\left(u_{2}-T_{0} \cdot s_{2}+\frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)-m_{1} \cdot\left(u_{1}-T_{0} \cdot s_{1}+\frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)\right]
\end{align*}
$$

latter [..] is total for c.v.
two special cases: a system (fixed mass) and steady-state, steady flow process for a control volume

## system (fixed mass)

$$
\sum_{n}\left[m_{i_{n}} \cdot\left(h_{i}-T_{0} \cdot s_{i}+\frac{v_{i}^{2}}{2}+g \cdot z_{i}\right)\right]=0 \quad \sum_{n}\left[m_{e_{n}} \cdot\left(h_{e}-T_{0} \cdot s_{e}+\frac{v_{e}^{2}}{2}+g \cdot z_{e}\right)\right]=0 \quad m_{1}=m_{2}=m
$$

system (fixed mass

$$
\begin{equation*}
\frac{\mathrm{w}_{\text {rev_1_2 }}}{\mathrm{m}}=\mathrm{w}_{\text {rev_1_2}}=\left(\mathrm{u}_{1}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{1}+\frac{\mathrm{v}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\mathrm{u}_{2}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{2}+\frac{\mathrm{v}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right) \tag{8.8}
\end{equation*}
$$

steady-state, steady flow process

$$
m_{2} \cdot\left(u_{2}-T_{0} \cdot s_{2}+\frac{v_{2}^{2}}{2}+g \cdot z_{2}\right)-m_{1} \cdot\left(u_{1}-T_{0} \cdot s_{1}+\frac{v_{1}^{2}}{2}+g \cdot \mathrm{z}_{1}\right)=0
$$

steady-state, steady flow process - rate form

$$
\begin{equation*}
W_{-} \operatorname{dot}_{\text {rev }}=\sum_{n}\left[m_{i_{n}} \cdot\left(h_{i}-T_{0} \cdot s_{i}+\frac{v_{i}^{2}}{2}+g \cdot z_{i}\right)\right]-\left[\sum_{n}\left[m_{e_{n}} \cdot\left(h_{e}-T_{0} \cdot s_{e}+\frac{v_{e}^{2}}{2}+g \cdot z_{e}\right)\right]\right] \tag{8.9}
\end{equation*}
$$

## single flow of fluid

$$
\begin{equation*}
\frac{\mathrm{W}_{-} \operatorname{dot}_{\text {rev }}}{\mathrm{m}_{-} \text {dot }}=\mathrm{w}_{\mathrm{rev}}=\mathrm{h}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{\mathrm{i}}+\frac{\mathrm{V}_{\mathrm{i}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{i}}-\left(\mathrm{h}_{\mathrm{e}}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{\mathrm{e}}+\frac{\mathrm{v}_{\mathrm{e}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{e}}\right) \tag{8.10}
\end{equation*}
$$

above represents maximum work for given change of state of a system what is maximum work that can be done by system in a given state???
answer: when system is in equilibrium with the environment, no spontaneous change of state can occur, and is incapable of doing work. therefore if system in a given state undergoes a completely reversible process until it is in equilibrium with the environment, the maximum reversible work will have been done by the system
steady state, steady flow
process ...(e.g. single flow)

$$
\begin{equation*}
\mathrm{w}_{\mathrm{rev}}=\mathrm{h}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}} \cdot s_{\mathrm{i}}+\frac{\mathrm{v}_{\mathrm{i}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{i}}-\left(\mathrm{h}_{\mathrm{e}}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{\mathrm{e}}+\frac{\mathrm{v}_{\mathrm{e}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{e}}\right) \tag{8.10}
\end{equation*}
$$

maximum when mass leaving c.v. is in equilibrium with environment. define $\psi=$ availability (per unit mass flow)
steady state, steady flow process ...(e.g. single flow ...availability (per unit mass flow)

$$
\begin{equation*}
\psi=\mathrm{h}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}+\frac{\mathrm{v}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}-\left(\mathrm{h}_{\mathrm{o}}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{\mathrm{o}}+\frac{\mathrm{V}_{\mathrm{o}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{o}}\right) \tag{8.16}
\end{equation*}
$$

## reversible work between any two states = decrease in availablity between them

$$
\mathrm{w}_{\mathrm{rev}}=\psi_{\mathrm{i}}-\psi_{\mathrm{e}}=\mathrm{h}_{1}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{1}-\mathrm{h}_{2}+\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{2}=\mathrm{h}_{1}-\mathrm{T}_{0} \cdot \mathrm{~s}_{1}-\mathrm{h}_{2}+\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{2}=\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)-\mathrm{T}_{\mathrm{o}} \cdot\left(\mathrm{~s}_{1}-\mathrm{s}_{2}\right)(8.17) \text { extended }
$$

$$
\begin{align*}
& \text { can be written for more than one } \quad \mathrm{W}-\operatorname{dot}_{r e v}=\sum_{\mathrm{n}}\left(\mathrm{~m}_{\mathrm{i}_{\mathrm{n}}} \cdot \psi_{\mathrm{i}}{ }_{n}\right)-\sum_{\mathrm{n}}\left(\mathrm{~m}_{e_{n}} \cdot \psi_{e_{n}}\right) \\
& \text { flow ... }
\end{align*}
$$

## for a system (no flow across the control surface)

. need to account for work done by system against the surroundings ...
... assume kinetic and potential energy changes negligible ...

$$
\begin{equation*}
\frac{\mathrm{W}_{\mathrm{rev} \_1 \_2}}{\mathrm{~m}}=\mathrm{w}_{\mathrm{rev} \_1 \_2}=\left(\mathrm{u}_{1}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{1}+\frac{\mathrm{v}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\mathrm{u}_{2}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{2}+\frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right) \tag{8.8}
\end{equation*}
$$

becomes ... $\mathrm{w}_{\text {rev_1_2 }}=\left(\mathrm{u}_{1}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{s}_{1}\right)-\left(\mathrm{u}_{2}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{s}_{2}\right)$

$$
\begin{equation*}
\mathrm{w}_{\mathrm{rev} \_\max }=\left(\mathrm{u}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}\right)-\left(\mathrm{u}_{\mathrm{o}}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{\mathrm{o}}\right) \tag{8.19}
\end{equation*}
$$

availability per unit mass is then ... this maximum work - that done against the surroundings

$$
\begin{equation*}
\mathrm{W}_{\text {surr }}=\mathrm{p}_{\mathrm{o}} \cdot\left(\mathrm{~V}_{\mathrm{o}}-\mathrm{V}\right)=\mathrm{m} \cdot \mathrm{p}_{\mathrm{o}} \cdot\left(\mathrm{v}_{\mathrm{o}}-\mathrm{v}\right) \tag{8.20}
\end{equation*}
$$

$\phi=$ availability_w_o_KE_PE $=\mathrm{w}_{\text {rev_max }}-\mathrm{w}_{\text {surr }}=\left(\mathrm{u}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{s}\right)-\left(\mathrm{u}_{\mathrm{o}}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{s}_{\mathrm{o}}\right)+\mathrm{p}_{\mathrm{o}} \cdot\left(\mathrm{v}-\mathrm{v}_{\mathrm{o}}\right)$

## availability w/o KE and PE per unit mass of system

$$
\begin{equation*}
\phi=\left(\mathrm{u}+\mathrm{p}_{\mathrm{o}} \cdot \mathrm{v}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}\right)-\left(\mathrm{u}_{\mathrm{o}}+\mathrm{p}_{\mathrm{o}} \cdot \mathrm{v}_{\mathrm{o}}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{\mathrm{o}}\right)=\mathrm{u}-\mathrm{u}_{\mathrm{o}}+\mathrm{p}_{\mathrm{o}} \cdot\left(\mathrm{v}-\mathrm{v}_{\mathrm{o}}\right)-\mathrm{T}_{\mathrm{o}} \cdot\left(\mathrm{~s}-\mathrm{s}_{\mathrm{o}}\right) \tag{8.21}
\end{equation*}
$$

and reversible work maximum between states 1 and 2 is ...

$$
\begin{equation*}
\mathrm{w}_{\mathrm{rev} \_1 \_2}=\phi_{1}-\phi_{2}-\mathrm{p}_{\mathrm{o}} \cdot\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)+\frac{\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}}{2}+\mathrm{g} \cdot\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right) \tag{8.22}
\end{equation*}
$$

check ...

$$
\phi_{1}:=\mathrm{u}_{1}-\mathrm{u}_{\mathrm{o}}+\mathrm{p}_{\mathrm{o}} \cdot\left(\mathrm{v}_{1}-\mathrm{v}_{\mathrm{o}}\right)-\mathrm{T}_{\mathrm{o}} \cdot\left(\mathrm{~s}_{1}-\mathrm{s}_{\mathrm{o}}\right) \quad \phi_{2}:=\mathrm{u}_{2}-\mathrm{u}_{\mathrm{o}}+\mathrm{p}_{\mathrm{o}} \cdot\left(\mathrm{v}_{2}-\mathrm{v}_{\mathrm{o}}\right)-\mathrm{T}_{\mathrm{o}} \cdot\left(\mathrm{~s}_{2}-\mathrm{s}_{\mathrm{o}}\right)
$$

$\mathrm{w}_{\mathrm{rev} \_1 \_2}:=\phi_{1}-\phi_{2}-\mathrm{p}_{\mathrm{o}} \cdot\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)+\frac{\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}}{2}+\mathrm{g} \cdot\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)$
$\mathrm{w}_{\mathrm{rev} \_1 \_2}$ simplify $\rightarrow \mathrm{u}_{1}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{s}_{1}-\mathrm{u}_{2}+\mathrm{T}_{\mathrm{o}} \cdot \mathrm{s}_{2}+\frac{1}{2} \cdot \mathrm{~V}_{1}{ }^{2}-\frac{1}{2} \cdot \mathrm{~V}_{2}{ }^{2}+\mathrm{g} \cdot \mathrm{z}_{1}-\mathrm{g} \cdot \mathrm{z}_{2}$
matches ...

$$
\frac{\mathrm{W}_{\mathrm{rev} \_1 \_2}}{\mathrm{~m}}=\mathrm{w}_{\mathrm{rev} \_1 \_2}=\left(\mathrm{u}_{1}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{1}+\frac{\mathrm{v}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\mathrm{u}_{2}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{2}+\frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)
$$

(8.8) from above

$$
\text { define some units } \ldots \quad \mathrm{kPa}:=10^{3} \mathrm{~Pa} \quad \mathrm{~kJ}:=10^{3} \mathrm{~J}
$$

example ... geothermal well
water as saturated liquid issues from a process at 200 deg $C$.
What is maximum power if the environment is at $10^{\wedge} 5 \mathrm{~N} / \mathrm{m}^{\wedge} 2$ at $30 \mathrm{deg} C$
$\mathrm{T}_{1 \_C}:=200$

$$
\begin{equation*}
\psi=\mathrm{h}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}-\left(\mathrm{h}_{\mathrm{o}}-\mathrm{T}_{\mathrm{o}} \cdot \mathrm{~s}_{\mathrm{o}}+\frac{\mathrm{V}_{\mathrm{o}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{o}}\right) \tag{8.16}
\end{equation*}
$$

1 saturated $\quad \mathrm{T}_{1}:=\left(273+\mathrm{T}_{1 \_\mathrm{C}}\right) \cdot \mathrm{K} \quad \mathrm{T}_{1}=473 \mathrm{~K} \mathrm{p}_{1}:=1.5538 \mathrm{MPa} \quad \mathrm{h}_{1}:=852.45 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~s}_{1}:=2.3309 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\begin{aligned} & \text { environment } \\ & \text { (dead state) }\end{aligned} \quad \mathrm{P}_{0}:=10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \quad \mathrm{~T}_{0 \_\mathrm{C}}:=30 \quad \mathrm{~T}_{0}:=\left(273.16+\mathrm{T}_{0 \_\mathrm{C}}\right) \cdot \mathrm{K} \mathrm{T}_{0}=303.16 \mathrm{~K} \quad \mathrm{P}_{0}=100 \mathrm{kPa}$
water at this state is "compressed liquid" as pressure exceeds saturation pressure at 30 deg $\mathbf{C}$
ref: water saturated liquid at 30 deg $\mathbf{C}$

$$
\mathrm{p}_{\text {sat_30 }}:=4.246 \mathrm{kPa}
$$

$$
\mathrm{v}_{\mathrm{f} \_30}:=1.004 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad \mathrm{~h}_{\mathrm{f} \_30}:=125.79 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~s}_{\mathrm{f} \_30}:=0.437 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

limited values for compressed liquid are in Table A.1.4 well beyond this pressure water is ~ incompessible values for $u$, $v$ and $s$ can be estimated to be the saturation values at the $T$ so... (see example validation below)

$$
\mathrm{v}_{0}:=\mathrm{v}_{\mathrm{f} \_30} \quad \mathrm{~s}_{0}:=\mathrm{s}_{\mathrm{f} \_30}
$$

but work must be done to compress to higher pressure than saturated

$$
\begin{aligned}
& \text { estimate from definition of enthalpy: } \\
& \qquad \begin{array}{l}
\mathrm{h}=\mathrm{u}+\mathrm{p} \cdot \mathrm{v}=\mathrm{du}+\mathrm{p} \cdot \mathrm{dv}+\mathrm{v} \cdot \mathrm{dp} \quad \int_{1}^{2} 1 \mathrm{dh}=\mathrm{h}_{2}-\mathrm{h}_{1}=\int_{1}^{2} 1 \mathrm{du}+\int_{1}^{2} \mathrm{pdv}+\int_{1}^{2} \mathrm{vdp} \\
\text { we'll see later } 1 \mathrm{du}=\mathrm{c}_{\mathrm{v}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{v} \int_{1}^{2} 1 \mathrm{dp}=\mathrm{v}_{\mathrm{f}}(\mathrm{~T}) \cdot\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \\
\psi:=\mathrm{h}_{1}-\mathrm{T}_{0} \cdot \mathrm{~s}_{1}-\left(\mathrm{h}_{0}-\mathrm{T}_{0} \cdot \mathrm{~s}_{0}\right) \quad \mathrm{dv} \sim 0 \lll 1=>\mathrm{v}=\text { constant so } \ldots \\
\mathrm{h}_{0}:=\mathrm{h}_{\mathrm{f}_{2} 30}+\mathrm{v}_{\mathrm{f} 3} \cdot\left(\mathrm{p}_{0}-\mathrm{p}_{\mathrm{sat}} 30\right) \quad \psi=152.409 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
\end{aligned}
$$

to show example of estimates $\mathrm{u}, \mathrm{v}$, and s of compressed liquid = saturation, but not h consider value in Table vs stauration at T

Table A.1.1.4
$\mathrm{p}=10 \mathrm{MPa}$
$\mathrm{T}=40 \mathrm{deg} \mathrm{C}$

$$
\text { i := } 1 . .4
$$

Table A.1.1.1 saturation
$\mathrm{t}=40 \mathrm{deg} \mathrm{C}$ difference ( $\mathrm{col} 2-\mathrm{col} 3$ )
differences all $<1 \%$ for $10^{6}$ pressure difference h differs by 5\%
using estimate from definition of enthalpy

$$
\mathrm{h}:=\operatorname{data}_{3,2} \frac{\mathrm{~kJ}}{\mathrm{~kg}}+\operatorname{data}_{1,2} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \cdot\left(\operatorname{data}_{0,1} \mathrm{~Pa}-\operatorname{data}_{0,2} \mathrm{~Pa}\right) \quad \mathrm{h}=177.643 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

and difference is ... $\frac{\text { data }_{3,1} \frac{\mathrm{~kJ}}{\mathrm{~kg}}-\mathrm{h}}{\text { data }_{3,1} \frac{\mathrm{~kJ}}{\mathrm{~kg}}} \cdot 100=-0.716 \quad$ difference now $<1 \%$

