

Fuel	Formula (phase)	Molocular weight	Specific gravity: (density,† hg/m ³)	ifest of v aposiz ation, k J/hg ‡	Specific heat		Higher	Lower	LIIV of				
					Liquid, hJ/hg - K	Vapor c _a , kJ/kg · K	beeting value, MJ/kg	nesting value, MJ/kg .	stoich. minture, MJ/hg	(4)17.	(F/A),	Foel oct	aue ratiu; MON
Practical fuels												,	
Gasoline	C,H1,47,(I)	~110	0.72 0.78	350	2.4	~1.7	47.3	44.0	2.83	14.6	0.0685	91-99	82-89
Light diesel	C,H,,,(I)	~170	0.78 0.84	270	2.2	~1.7	46.1	43.2	2.79	14.5	0.0690	-	
Heavy diesel	C,H _{1,2} (1)	~ 200	0.82-0.88	230	1.9	~1.7	43.3	42.8	2.85	14.4	0.0697	-	-
rentural gas	C, 113.84 (40.14(8)	~18	(~0.791)			~1	00	43	4.9	14.3	0.069	-	_
Pure hydrocarbons													
Methane	CH ₄ (g)	16.04	(0.72†)	509	0.63	2.2	\$5.5	50.0	2.72	17.23	0.0580	120	120
Propane	C3H4(8)	44.10	0.51 (2.01)	426	2.9	1.6	39.4	46.4	2.75	15.67	0.0638	.112	97
Isoociane	$C_{0}H_{10}(1)$	114.23	0.092	308	4.1	1.03	47.8	44.3	2.75	13.13	0.0001	100	100
Celane	C16 ⁽¹⁾ 34 ⁽¹⁾	220.44	0.773	336		1.0	47.3	40.0	2.78	19.82	0.0073		·
Toluene	C H (I)	02.14	0.877	412	1.74		43.5	40.4	2.02	13.47	0.0733	120	113
1 Officine	C ; 11(0)	94.14	0.807	412	1.00	1.1	44.3	40.0	4.19	13.30	0.0/41	120	107
Alcohols													
Methanol	CH40(I)	32.04	0.792	1103	2.6	1.72	22.7	20.0	· 2.68	6.47	0.155	106	92
Ethanol	C3H0(I)	46.07	0.785	840	2.5	1.93	29.7	26.9	2.69	9.00	0.111	107	89
Other fuels													
Caybon	C(s)	12.01	~ 26	-	-	-	33.8	33.8	2.70	11.51	0.0869		
Carbon monoxide	CO(g)	28.01	(1.25†)	_		1.05	10. I	10.1	2.91	2.467	0.405		
Hydrogen	H ₂ (g)	2.015	(0.090†)	-		1.44	142.0	120.0	3.40	34.3	0.0292		

© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

- 1. High cost
- 2. With the part-load stratified-charge concept :
 - High hydrocarbon emissions at light load
 - Significant NOx emission, and lean exhaust not amenable to 3-way catalyst operation
- 3. Particulate emissions at high load
- 4. Liquid gasoline impinging on combustion chamber walls
 - Hydrocarbon source
 - Lubrication problem
- 5. Injector deposit
 - Special fuel additive needed for injector cleaning
- 6. Cold start behavior
 - Insufficient fuel injection pressure
 - Wall wetting

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

2.61 Internal Combustion Engines Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.