Combustion Stoic	hiometry	
Air: Oxygen 21%, Nitrogen (nitrogen Fuel: Hydrocarbons (C _a H _b), oxygenate	+ argon) 79% es (C _a H _b O _c)	
Examples:		<u>LHV</u>
Gasoline Diesel fuel Natural gas (mostly methane) Coal Methanol Ethanol	C _n H _{1.87n} C _n H _{1.75n} CH _{3.8} C _n H _{0.8n} CH ₃ OH C ₂ H ₅ OH	44 MJ/kg 43 MJ/kg 45 MJ/kg 30 MJ/kg 20 MJ/kg 26 MJ/Kg
(LHV = Energy released per unit mass of heat of vaporization of the water vapor is	f fuel without re in the combust	ecovery of the ion products)
Stoichiometric Combustion		
$C_{a}H_{b}O_{c} + \frac{1}{2}\left(2a + \frac{b}{2} - c\right)\left(O_{2} + 3.773\right)$	8 N ₂)	
$\rightarrow aCO_2 + \frac{b}{2}H_2O + \frac{1}{2}\left(2a + \frac{b}{2} - c\right)x3$	8.773 N ₂	
For typical petroleum based fuel (c=0):		
(A/F) _{stoich} ~ 14.6 (range 14.2 to 15)		

© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

2.61 Internal Combustion Engines Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.