

© California Energy Commission. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

Image courtesy of the U.S. Energy Information Administration.

Image courtesy of the U.S. Department of Energy.

Image courtesy of the U.S. Energy Information Administration.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

- Bio-diesels and ethanol are fundamentally clean and attractive fuels to be used in engines
- The use of these fuels as supplements to petroleum base fuel are compatible with current engine configuration and fuel infra-structure
- Practical issues can be adequately handled by engineering
 - Fuel quality
 - Engine calibration
 - Materials compatibility, viscosity, ...

Burning the fuel is the least of the problem !!!

21

© ExxonMobil. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

US crop-based bio-fuel capacity					
US biofuels US harvested crop land (US agriculture census 2002), hectare 1.23E+08 US all distillate use (diesel+jel+power gen etc.) EIA2007; L/yr 3.34E+11				* To get energ multiplied by biodiesel and for ethanol	y ratio, 0.93 for by 0.59
US gasoline use, EIA 2007; L/yr	5.4()E+11	Limit of production (gal)	Limit of production (L)	Liq. vol ratio of limit to
bio-diesel	yai/acre L/	neclare		I	Demand
palm oil	5.08E+02	4,756	1.54E+1	1 5.85E+11	1.63
coconut	2.30E+02	2,153	6.99E+1	0 2.65E+11	0.74
rapeseed	1.02E+02	955	3.10E+1	0 1.17E+11	0.33
soy	6.00E+01	562	1.82E+1	0 6.91E+10	0.19
peanut	9.00E+01	843	2.73E+1	0 1.04E+11	0.29
sunflower	8.20E+01	1 072	2.49E+1	0 9.44E+10	0.27
	2.000-02	1,072	0.00211	0 2.000111	0.04
corp	3 44E+02	3 217	1 0/E+1	1 3 06E+11	0 71
sugar cane (Brazil)	8.00E+02	7.489	2.43E+1	1 9.21E+11	1.71
Crop-based bio-fi capacity to meet t	uels do not hav he liquid fuel d	ve end lemai	ough nd !!!		
Yield dependent on location and weather			1 hectare	=104m ² ~2 5 acr	26

Image courtesy of the U.S. Department of Energy.

Image courtesy of the U.S. Department of Energy.

Image courtesy of the U.S. Department of Agriculture.

© <u>Laghi.</u>]. Some rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/fag-fair-use</u>.

© WH Freeman. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

2.61 Internal Combustion Engines Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.