Diesel Engine Combustion

- 1. Characteristics of diesel combustion
- 2. Different diesel combustion systems
- 3. Phenomenological model of diesel combustion process
- 4. Movie of combustion in diesel systems
- 5. Combustion pictures and planar laser sheet imaging

DIESEL COMBUSTION PROCESS

PROCESS

- · Liquid fuel injected into compressed charge
- Fuel evaporates and mixes with the hot air
- Auto-ignition with the rapid burning of the fuelair that is "premixed" during the ignition delay period
 - Premixed burning is fuel rich
- As more fuel is injected, the combustion is controlled by the rate of diffusion of air into the flame

DIESEL COMBUSTION PROCESS

NATURE OF DIESEL COMBUSTION

- Heterogeneous
 - liquid, vapor and air
 - spatially non-uniform
- turbulent
- · diffusion flame
 - High temperature and pressure
 - Mixing limited

The Diesel Engine

- Intake air not throttled
 - Load controlled by the amount of fuel injected
 - >A/F ratio: idle ~ 80
 - >Full load ~19 (less than overall stoichiometric)
- No "end-gas"; avoid the knock problem
 - High compression ratio: better efficiency
- Combustion:
 - Turbulent diffusion flame
 - Overall lean

Diesel as the Most Efficient Power Plant

- Theoretically, for the same CR, SI engine has higher η_f ; but diesel is not limited by knock, therefore it can operate at higher CR and achieves higher η_f
- · Not throttled small pumping loss
- Overall lean higher value of γ higher thermodynamic efficiency
- · Can operate at low rpm applicable to very large engines
 - slow speed, plenty of time for combustion
 - small surface to volume ratio: lower percentage of parasitic losses (heat transfer and friction)
- Opted for turbo-charging: higher energy density
 - Reduced parasitic losses (friction and heat transfer) relative to output

Large Diesels: $\eta_f \sim 55\%$ ~ 98% ideal efficiency!

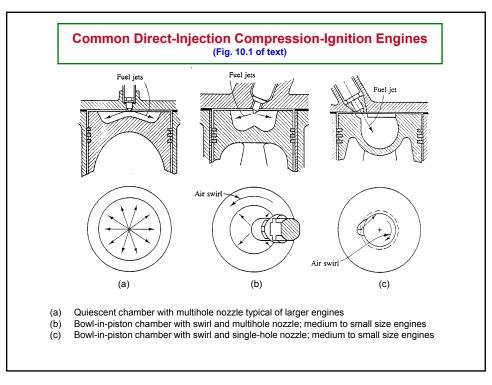
Diesel Engine Characteristics (compared to SI engines)

- Better fuel economy
 - Overall lean, thermodynamically efficient
 - Large displacement, low speed lower FMEP
 - Higher CR
 - > CR limited by peak pressure, NOx emissions, combustion and heat transfer loss
 - Turbo-charging not limited by knock: higher BMEP over domain of operation, lower relative losses (friction and heat transfer)
- Lower Power density
 - Overall lean: would lead to smaller BMEP
 - Turbocharged: would lead to higher BMEP
 - > not knock limited, but NOx limited
 - > BMEP higher than naturally aspirated SI engine
 - Lower speed: overall power density (P/V_D) not as high as SI engines
- · Emissions: more problematic than SI engine
 - NOx: needs development of efficient catalyst
 - PM: regenerative and continuous traps

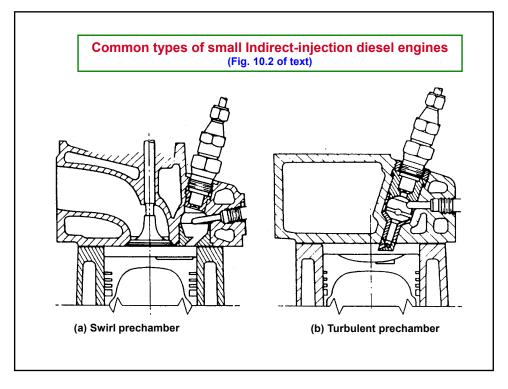
Typical SI and Diesel operating value comparisons

	SI	Diesel	
• BMEP			
 Naturally aspirated: 	10-15 bar	10 bar	
– Turbo:	15-25 bar	15-25 bar	
 Power density 			
 Naturally aspirated: 	50-70 KW/L	20 KW/L	
– Turbo:	70-120 KW/L	40-70 KW/L	
• Fuel			
H to C ratio	CH _{1.87}	CH _{1.80}	
 Stoichiometric A/F 	14.6	14.5	
Density	0.75 g/cc	0.81 g/cc	
LHV (mass basis)	44 MJ/kg	43 MJ/kg	
LHV (volume basis)	3.30 MJ/L	3.48 MJ/L (5.5% higher)	
LHV (CO₂ basis)	13.9 MJ/kgCO ₂	13.6 MJ/kgCO ₂ (2.2% lower)	
_	_	_	

Disadvantages of Diesel Engines

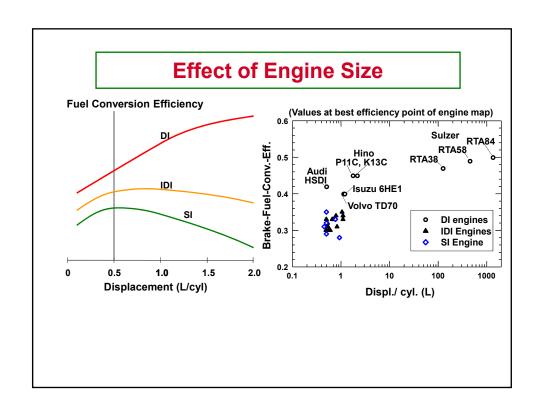

- Cold start difficulty
- Noisy sharp pressure rise: cracking noise
- Inherently slower combustion
- · Lower power to weight ratio
- Expensive components
- NO_x and particulate matters emissions

Market penetration


- Diesel driving fuel economy ~ 30% better than SI
 - 5% from fuel energy/volume
 - 15% from eliminating throttle loss
 - 10% from thermodynamics
 - ➤ 2nd law losses (friction and heat transfer)
 - ➤ Higher compression ratio
 - > Higher specific heat ratio
- **□**Dominant world wide heavy duty applications
- **□**Dominant military applications
- **□**Significant market share in Europe
 - >Tax structure for fuel and vehicle
- Small passenger car market fraction in US and Japan
 - ➤Fuel cost
 - ➤ Customer preference
 - ➤ Emissions requirement

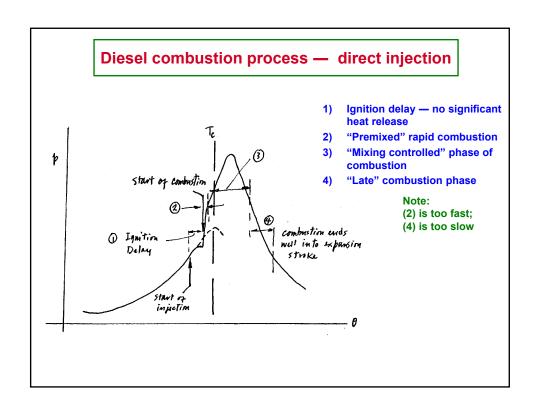
Applications

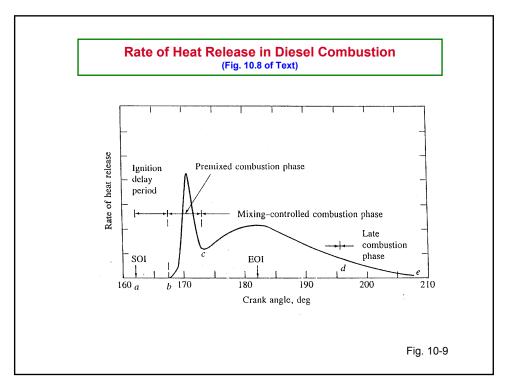
- Small (7.5 to 10 cm bore; previously mainly IDI; new ones are high speed DI)
 - passenger cars
- Medium (10 to 20 cm bore; DI)
 - trucks, trains
- Large (30 to 50 cm bore; DI)
 - trains, ships
- Very Large (100 cm bore)
 - stationary power plants, ships


© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

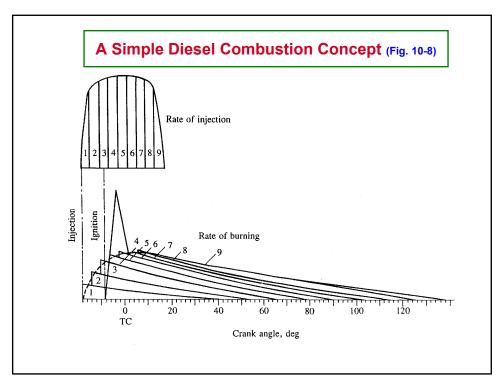
 $^{\circ}$ McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see $\frac{\text{https://ocw.mit.edu/help/faq-fair-use}}{\text{https://ocw.mit.edu/help/faq-fair-use}}$.

Common Diesel Combustion Systems (Table 10.1)							
System	Direct injection			Indirect injection			
	Quiescent	Medium swirl	High swirl "M"	High swirl multispray	Swirl chamber	Pre- chamber	
Size	Largest	Medium	Medium smaller	Medium small	Smallest	Smallest	
Cycle	2-/ 4-stroke	4-stroke	4-stroke	4-stroke	4-stroke	4-stroke	
Turbocharged/ supercharged/ naturally aspirated	TC/S	TC/NA	TC/NA	NA/TC	NA/TC	NA/TC	
Maximum speed, rev/min	120-2100	1800-3500	2500-5000	3500-4300	3600-4800	4500	
Bore, mm	900-150	150-100	13080	100-80	95-70	95-70	
Stroke/bore	3.5-1.2	1.3-1.0	1.2-0.9	1.1-0.9	1.1-0.9	1.1-0.9	
Compression ratio	1215	1516	16-18	16-22	20-24	22-24	
Chamber	Open or shallow dish	Bowl-in- piston	Deep bowl- in-piston	Deep bowl- in-piston	Swirl pre- chamber	Single/ multi- orifice pre- chamber	
Air-flow pattern	Quiescent	Medium swirl	High swirl	Highest swirl	Very high swirl in pre- chamber	Very turbu- lent in pre chamber	
Number of nozzle holes	Multi	Multi	Single	Multi	Single	Single	
Injection .	Very high	High	Medium	High	Lowest	Lowest	

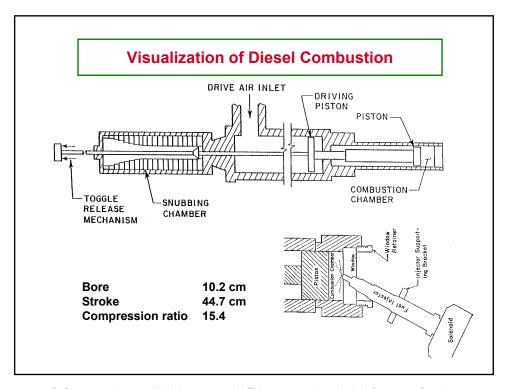

© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

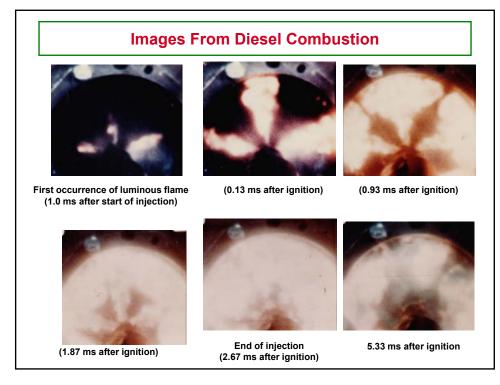


Typical Large Diesel Engine Performance Diagram 140 120 (100 80 60 40 20 2.5 2.0 (1eq) 1.5 Max Pressure Compression Sulzer RLB 90 - MCR 1 **Turbo-charged 2-stroke Diesel** - 1.9 m stroke; 0.9 m bore Rating: 0.5 Speed: 102 Rev/ min 0 500 450 (2 400 0 350 300 250 200 13 12 11 10 9 - Piston speed 6.46 m/s Exh. Temp, Turbine Inlet and Outlet **BMEP: 14.3 bar** Configurations - 4 cyl: 11.8 MW (16000 bhp) - 5 cyl: 14.7 MW (20000 bhp) Specific air quantity - 6 cyl: 17.7 MW (24000 bhp) - 7 cyl: 20.6 MW (28000 bhp) - 8 cyl: 23.5 MW (32000 bhp) 210 205 200 195 190 - 9 cyl: 26.5 MW (36000 bhp) Specific fuel consumption - 10 cyl: 29.4 MW (40000 bhp) - 12 cyl: 35.3 MW (48000 bhp) 10 12 BMEP (bar) η_{f,b}=0.45 @ 185 g/kW-hr

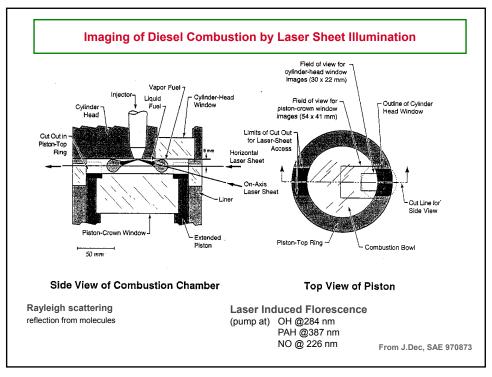


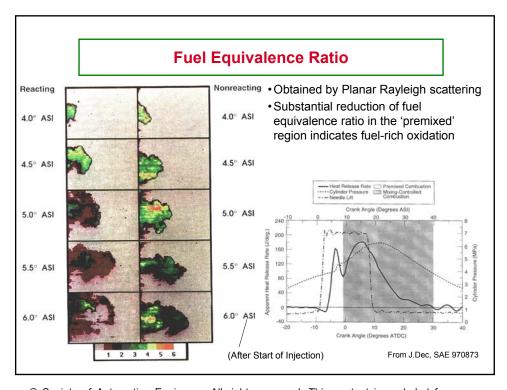
© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.



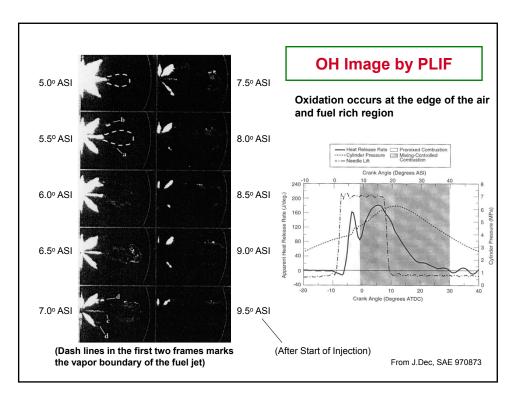

© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

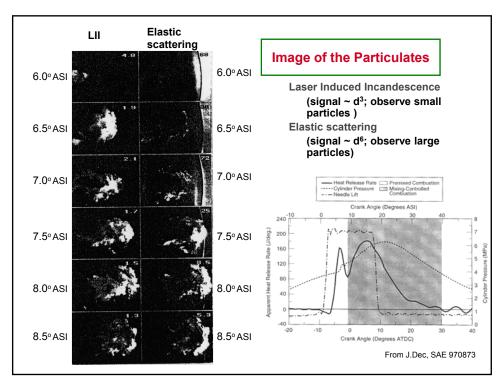
© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

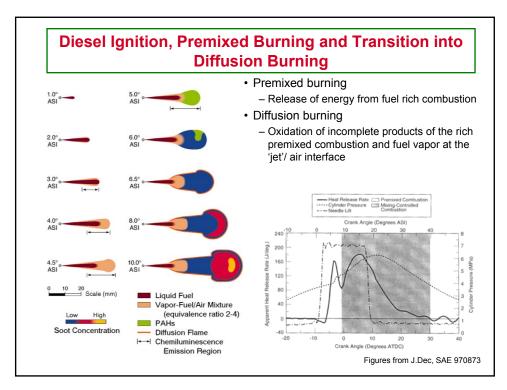

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.


© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

FEATURES OF DIESEL COMBUSTION


- Ignition delay
 - Auto-ignition in different parts of combustion chamber
- After ignition, fuel sprays into hot burned gas
 - Then, evaporation process is fast
- Major part of combustion controlled by fuel air mixing process
 - Mixing dominated by flow field formed by fuel jet interacting with combustion chamber walls during injection
- Highly luminous flame:
 - Substantial soot formation in the fuel rich zone by pyrolysis, followed by substantial subsequent oxidation


© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.


© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

© Society of Automotive Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

MIT OpenCourseWare https://ocw.mit.edu

2.61 Internal Combustion Engines Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.