MASSACHESUTS ISNTITUTE OF TECHNOLOGY FUNDAMNETALS OF ADVANCED ENEFRGY CONVERSION SPRING 04 HOMEWORK VI DUE DATE, April 5, 2004

Consider a single proton exchange membrane fuel cell operated at 80C with pure H₂ and pure O₂ inputs at 150kpa, in which Pt nanoparticles supported on carbon are used as the electrocatalyst for hydrogen oxidation and oxygen reduction. The anode and cathode electrode areas are 5cm^2 . The ohmic resistance across the fuel cell is $5 \cdot 10^{-3}$ ohms. The exchange current densities for the rate determining steps of oxygen reduction and hydrogen oxidation on Pt nanoparticles are $5 \times 10^{-11} \text{A/cm}^2$ and $1 \times 10^{-3} \text{A/cm}^2$, respectively.

- 1) Calculate the equilibrium fuel cell voltage under the operating conditions.
- 2) Develop an analytical expression that relates the fuel cell operating voltage to the current density obtainable from the fuel cells by considering ohmic and activation overpotentials across the cell. Plot the effect of ohmic and activation overpotentials to the fuel cell voltage loss as a function of current density in mA/cm^2 in the range from 0 to $2A/cm^2$.
- 3) Plot the second law efficiency of the fuel cell (see equation 2.7 in lecture note on electrochemical thermodynamics (electrochemLecturenote1.pdf)) and the power density in W/cm² as a function of current density in mA/cm².

Please state all assumptions clearly.