Homework V solution

Problem 1.

1. The reaction rate equations for the three reactions are as follow: $k_{b,1} = k_{f,1} / K_{C1}$ $k_{b,2} = k_{f,2} / K_{C2}$ $R_{r,1} = k_{f,1} [CO] [H_2]^2 - k_{b,1} [CH_3OH]$ $R_{r,2} = k_{f,2} [CO] [H_2O] - k_{b,2} [CO_2] [H_2]$ $R_{r,3} = k_{f,3} [CH_3OH]$

Note that you should consider backward reactions in the first two reactions.

2. The rates of formation of each species are as follow:

$$\frac{d[CO]}{dt} = -R_{r,1} - R_{r,2}$$

$$\frac{d[H_2]}{dt} = -2R_{r,1} + R_{r,2} + R_{r,3}$$

$$\frac{d[CH_3OH]}{dt} = R_{r,1} - R_{r,3}$$

$$\frac{d[H_2O]}{dt} = -R_{r,2}$$

$$\frac{d[CO_2]}{dt} = R_{r,2}$$

$$\frac{d[CO_2]}{dt} = R_{r,3}$$

4. Increasing the pressure raises the mole fraction of CH3OH when $T \le 340$, but does not have a significant effect after $T \ge 360$. It is due to the following reasons:

- 1) In the first reaction, which generates CH₃OH, the forward reaction favors higher pressure since the number of moles decreases during the forward reaction. Thus, by increasing the pressure of the reactor, the concentration of CH₃OH increases more rapidly.
- 2) After T \geq 360, even at low pressure, the first reaction is sufficiently fast. So increasing the pressure does not help. Also, note that the concentration of CH₃OH drops back to almost zero with time due to the third reaction (dissociation of CH3OH) indicating that the third reaction becomes active after T \geq 360.

5. The maximum mole fraction of CH_3OH one can obtain is ~33% at T=340K and P=10-100atm with a residence time less than 1msec.

6. The mole concentration changes at T=340K, P=10atm and residence time=1msec are as follow:

	СО	H ₂	CH ₃ OH	H2O	CO ₂	CH ₂ O	Total
Before the reactor (mol/m ³)	71.5	167	0	47.6	71.5	0	357.3
After the reactor (mol/m^3)	0.0	25.8	70.6	47.1	72.0	0.3	215.8

From the first law of the thermodynamics one can get Q as follow:

$$Q = H_2 - H_1 = \sum_P n_i \hat{h}_i - \sum_R n_i \hat{h}_i = -6.5 \text{MJ}$$

Since this Q is with 357.3 mole of inlet mixture, one can get \dot{Q} as follow:

 $\dot{Q} = -6.5 MJ / 357.3 moles \cdot 300 moles / s = -5.4 M watt$

Problem 2.

1.

$$j_o = i_o / A = k^o [O]^* F = 10^{-6} cm / s \cdot 10^{-3} mol / 1000 cm^3 \cdot 96485 Coulomb / mol = 9.65 \cdot 10^{-2} \mu A / cm^2$$

2 and 3. Using the Butler-Volmer equation, you can get the following figures

