2.58J, HW\# 3,

1. Problem 2.6 (problem 1 from HW\#2)
2. Problem 3.31 (problem 3 from HW\#2)
3. Monte Carlo code (problem 5 from HW\#2)
4. Surface Emissivity. The refractive index of silicon at $0.63 \mu \mathrm{~m}$ is $(3.882,0.019)$, calculate the surface reflectivity, transmissivity, and emissivity of a semi-infinite silicon wafer (a) at normal incidence, (b) at 30° angle of inidence, and (c) 60° angle of incidence for both TE and TM waves. Also, estimate the penetration depth for normal incidence.
5. Fresnel Formula for TE Wave. Derive the Fresnel formula for a transverse electric wave incident onto a plane surface,
6. Tunneling of Photons. A vacuum gap of $0.2 \mu \mathrm{~m}$ is formed between two glass substrates. Plot the transmissivity of light from one glass substrate into another as a function of angle of incidence for an incident TM wave at $0.5 \mu \mathrm{~m}$. The refractive index of the glass is taken as 1.46. Compare the results with the situation if a thin film of glass of $0.2 \mu \mathrm{~m}$ is sandwiched between vacuum.
