
MIT 2.341 Macromolecular Hydrodynamics Quiz 2 2012 Solutions

Question 1

(i) To start, we recognize the following relationships on the stress and strain

γ = γk + γ2 (1)
τ = Gkγk + μkγ̇k = μ2γ̇2

Therefore, the following relationships are also true

γ̇ = γ̇k + γ̇2 (2)
τ̇ = Gkγ̇k + μkγ̈k = μ2γ̈2

By substituting the results for strain in Eq. 1, γ̇k = γ̇ − γ̇2 into our stress equation, we get

τ̇ = Gk(γ̇ − γ̇2) + μk(γ̈ − γ̈2) (3)

Furthermore, by substituting the result γ̇2 = τ/μ2 we have

τ
τ̇ = Gk

(
γ̇ −

μ2

)
+ μk

(
γ̈ − τ̇

(4)
μs

)
We can rearrange this result and we obtain

τ +
(

1 +
μ2

λ
μk

)
kτ̇ = μ2γ̇ + λkμ2γ̈ (5)

where λk ≡ μk/Gk. The Jeffreys model is given by

τ + λmτ̇ = (μm + μs)γ̇ + λmμsγ̈ (6)

So we can map the parameters from the new model to the Jeffreys model parameters by

λm =
(
1 + μ2 λμk

)
k

μm + μs = μ (7)
2

λmμs = λkμ2

which also gives

μ2 = μm + μs

μk = μs

(
1 + μs

μm

)
λk = λm

μs

μm+μs

Gk = Gm

(
1 + μs

(8)
2

μm

where Gm

)
≡ μm/λm.

(ii) We can integrate the Jeffreys model by using an integrating factor as we discussed in class.
Hence we take Eq. 6 and replace the left hand side by

∂
λm

∂t

{
τ exp

(
t

λm

)}
= exp

(
t

(
λm

){
μm + μs)γ̇ + λmμsγ̈

}
(9)

Integrating this result from the appropriate limits, we have
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τ(t) exp
(

t

λm

)
=

1
λm

∫ t

−∞
exp

(
t′

(μm + μs)γ̇(t′) + λmμsγ̈(t′) dt′ (10)
λm

){ }

So that we have

1
τ(t) =

λm

∫ t

−∞
exp

(
− t − t′

λ
λ

){
(μm + μs)γ̇(t′) + mμsγ̈(t′)

m

}
dt′ (11)

Next, we can eliminate the terms with γ̈ by using integration by parts on the term with γ̈.

1
τ(t) =

λm

∫ t

−∞
exp

(
− t − t′

λm

)
(μm+μs)γ̇(t′)dt′+exp

(
− t − t′

λm

)
μsγ̇(t′)

∣∣∣∣
t′=t

t′=−∞
− 1

λm

∫ t

−∞
exp

(
− t − t′

μ
λm

)
sγ̇(t′)dt′

(12)
which, provided γ̇ is finite at t′ = −∞, reduces to

1
τ(t) =

λm

∫ t

−∞
exp

(
− t − t′

μ
λm

)
mγ̇(t′)dt′ + μsγ̇(t) (13)

For a cessation of steady shear test, we have γ̇(t) = γ̇0

(
1 − H(t)

)
= γ̇0H(−t), where H(t) is

the Heaviside function. We take Eq. 13 and substitute in the strain rate function to obtain

τ(t) = 1
λm

∫ t
−∞ exp

(
− t−t′ μλm

)
mγ̇0H(−t′)dt′ + μsγ̇0H(−t)

τ(t) = 1
λm

∫ 0
−∞ exp

(
− t−t′

λm

)
μmγ̇0dt′ + μsγ̇0H(−t)

τ(t) = exp
(
− t−t′

(14)

μλm

)
mγ̇0 + μsγ̇0H(−t)

In dimensionless form, this result is

τ(t)
μmγ̇0

= exp
(
− t − t′

)
λ

)
+ βH( t

m
− (15)

where β ≡ μs/μm. So we see that the initial stress is τ(t = 0−) = (μm + μs)γ̇, and that the
stress instantaneously drops to τ(t = 0+) = μmγ̇, since the solvent no longer contributes to the
stress once the shearing is stopped.

(iii) To determine the complex modulus G∗(ω) it is convenient to use complex variables
exp(iωt) = cos(ωt) + i sin(ωt), where i

√≡ −1. Note, that ultimately, we are concerned
only with the real part of this complex variable. So we have

γ(t) = Re
{ − iγ0 exp(iωt)

γ̇(t) = Re
{
γ0ω exp(iωt)

γ̈(t) = Re iγ0ω
2 exp(iωt

}}
(16)

)

We also assume that the stress will take the form

{
τ(t) = Re

}
{(

G′(ω)+iG′′(ω) −iγ0 exp(iωt) =
Re

{(− iG′(ω)+G′′(ω)
)
γ0 exp(iωt)

}
, (or equivalently τ(t) = G′(ω)γ0 sin(ωt

)(
)+G′′(ω)γ0 cos(ωt),

when only the real part is considered). When we substitute these results in to Eq. 6 and ignore

)}

the Real operator Re
{ }

which can be taken as implicit, we have

0Integration by parts is uv
˛x=b

=˛
x=a

R b
u dv

a dx
dx +

R b

a
duvdx.
dx
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(−iG′(ω)+G′′(ω))γ0 exp(iωt)+iλω(−iG′(ω)+G′′(ω))γ0 exp(iωt) = (μm+μs)γ0ω exp(iωt)+iλμ 2
sγ0ω exp(iωt)

(17)
where we are writing λ = λm for simplicity. Simplifying, we have

( − iG′(ω) + G′′(ω)
)
(1 + iλω) = (μm + μs)ω + iλμsω

2 (18)

which is

(μm + μ ) 2

−iG′(ω) + G (ω) = s ω + iλμsω′′ (19)
1 + iλω

To obtain a real number in the denominator, we multiply the denominator and the numerator
by the complex conjugate of the denominator (1 − iλω).

(μm + μ−iG′(ω) + G′′(ω) = s)ω(1 − iλω) + iλμsω
2(1 − iλω)

(20)
1 + (λω)2

Simplifying, we have

μ−iG′(ω) + G′′(ω) = − mλ(λω)2
i
1 + (λω)2

+
μmλ(λω)

+ μ
1 + (λω) sω (21)

2

Recognizing that μm = Gmλm, we have

G′(ω) = (λω)2Gm 1+(λω)2

G′′(ω) = Gm
λω (22)

μ
1+(λω)2

+ sω

Again, there is a viscous and a viscoelastic contribution to G′′ only. In dimensionless form
these results are

G′(ω)
Gm

= (λω)2

1+(λω)2

G′′(ω)
Gm

= λω
(23)

βλ
1+(λω)2

+ ω
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The complex modulus is defined as G∗(ω) ≡ ∣∣ − iG′(ω) + G′′(ω)
∣∣ =

√
G′2(ω) + G′′2(ω), so we

have the following plots. (See overleaf.)

(iv) For a creep compliance test, we instantly apply a constant stress of τ0 for all time t > 0.
Since we now wish to solve for the strain as a function of time, neither the differential form of
the governing equation for the mechanical model given in Eq. 6 nor the integral form given in
Eq. 13 is very convenient. Instead, it is useful to reconsider the original equations for stress
and strain given in Eq. 1 for our new model, because strains add linearly for elements in series.
We can solve for the two strains independently and then add them together to determine the
total strain in time. The initial condition for the solvent strain is γ2(0) = 0.

Solving for the solvent, we have

τ(t) = τ0H(t) = μ2γ̇2 (24)

Hence γ2 = τ0 tμ .
For the visco

s

elastic element, we have

τ(t) = τ0H(t) = Gkγk + μkγ̇k (25)

This is a first order, ordinary differential equation in γ with a constant on the left side for all
t > 0. We can solve this equation to obtain1

τ
γk(t) = 0

Gk

{
1 − exp

(−t
(26)

λk

)}

This result is consistent with the initial condition at t = 0 that γk = 0 and γ̇k = τ0/μk.
The total strain is therefore

τ
( 0

γ t) =
μs

t +
τ0

Gk

{
1 − exp

(−t
(27)

λk

)}

The compliance is defined J(t) ≡ γ(t)/τ0, and for a creep test with the Jeffreys model we obtain

J(t) =
1
μs

t +
1

Gk

{
1 − exp

(−t

λk

)}
(28)

The normalized compliance is defined as J(t) ≡ γ(t)/τ0, and for the creep test we can thus
write

1
J(t)Gk =

β

t

λk
+

{
1 − exp

(−t
(29)

λk

)}

(v) To solve for the start up of this uniaxial extensional flow, we use Eq. 13 in tensorial form
to obtain three evolution equations for the three normal stresses.

τxx(t) = τyy(t) = − 1
λm

∫ t
−∞ exp

(
− t−t′

λm

)
μmε̇0H(t′)dt′ − μsε̇H(t)

τzz(t) = 1
λm

∫ t
−∞ exp

(
− t−t′

) (30)
ελ 2μmε̇0H(t′)dt′ + 2μs ˙0H(t)

m

For times t > 0, we have

1Eq. 25 can be solved with an integrating factor by ∂
∂t

˘
γk exp

`
t

λk

´¯
= 1

λk

R t

−∞ exp
`

t
λk

´ τ0H(t)dt′.
Gk
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τxx(t) = τyy(t) = −
(

1 − exp
(
− t

λm

))
μmε̇0 − μsε̇0

τzz(t) =

(
1 − exp

(
− t

(31)

sλ

)
μ

m

)
2 mε̇0 + 2μ ε̇0

Hence the stress in the viscous solvent adapts immediately to the imposed extensional flow,
just like a Newtonian fluid, while the stress in the viscoelastic component of the model grows
toward steady state with an exponential decay on the time scale λm. The extensional viscosity
is given by

τ
η+

E ≡ zz − τxx

ε̇0
=

(
1 − exp

(
− t

λm

))
3μm + 3μs (32)

So at long times the Trouton ratio is always Tr ≡ ηE
μ +μ = 3, and so this model does not

give rise to extensional strain-hardening. To generate
m

strain-hardening,
s

we need to consider
the convected derivative discussed in class.
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Question 2

This problem was based on problem 9.15 on page 408 in Rubinstein & Colby.

We are given DNA with molar mass M = 1.1 × 108 g/mol corresponding to n = 1.64 × 105

base pairs.

(i) For a base pair length l = 0.34 nm, the contour length is

Rmax = nl = (1.64 × 105) × (0.34 nm) = 5.58 × 104 nm = 55.8 μm (33)

Equivalently, we have Rmax = Nb, where N is the number of Kuhn segments and b is the Kuhn
segment length. We are given the Kuhn segment length of b = 300 nm, hence the number of
Kuhn segments is

N = Rmax/b = (5.58 × 104 nm)/(300 nm) = 186 (34)

We can also calculate the root mean square size of the molecule which is 〈R2〉 1
2 =

√
Nb = 1.27

μm, so it is clearly possible to see a molecule of DNA under a microscope, especially if using
fluorescence microscopy.

Overlap occurs when the volume of each polymer 4π3 〈R2〉3/2 is roughly equal to the total
system volume divided by the number of polymers M/c∗NA, where NA is Avagadro’s number.

c∗ ≈ M

NA

1
4
3π〈R2〉 3

2

=
M

NA

1
4 = 6.36
π3 (Nb2)3/2

× 10−4 mg/mL (35)

Some students could have also used

c∗ ≈ φ∗ M0

b3NA
=

M

NA

1
= 1.52

(Nb2)3/2
× 10−3 mg/mL (36)

where M0 = M/N is the monomer molecular weight and we use the scaling φ∗ ∼ N−1/2.
Note that these results are just approximate and that we could have used the Fox-Flory

equation given by Eq. 8.37 in Rubinstein & Colby, in which case we have

c∗ ≈ 1
[η]

≈ M
= 6.42

Φ〈R2〉3/2
× 10−3 mg/mL (37)

where Φ = 0.425NA = 2.5 × 1023 mol−1 is a universal constant.

(ii) Given that the entanglement concentration is ce = 10c∗ = 6.36 × 10−3 mg/mL, where
we have used our first result for c∗ above, we note that for the solution concentration of
c = 0.5 mg/mL the system is in the entangled regime. To determine the contour length of an
entanglement strand, we need the volume fraction at the entanglement concentration. To find
this quantity, we must first find the volume fraction at the overlap concentration, φ∗. We can
use the expression in Eq. 36

b3N
φ∗ ≈ c∗ A = 0.017 (38)

M0
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The volume fraction at the entanglement concentration is φe = 10φ∗ = 0.17. Note that a
number of students simply used the formula φ∗ ∼ N−1/2 = 0.073, but this approach gives an
erroneous result since it is just a scaling relationship. The conversion factor A for c = Aφ from
Eq. 38 that applies for a dilute solution is A = b3NA/M0 = 3.6 × 10−2 mg/mL, which is small
indicating that a small mass of polymer coil occupies a large volume. On the other hand, in
the melt, where φ = 1, A = ρ or the density of the polymer. For intermediate concentrations,
3.6 × 10−2 mg/mL < A < 103 mg/mL, so without knowing the exact value of the prefactor
A, we end up using one of these limits. As a consequence, we will notice below that our esti-
mates for modulus, viscosity and relaxation time for semi-dilute solutions of DNA appear to
be physically unreasonable in parts (ii) and (iii). However the results for parts (iv) and (v) are
reasonable. An example study DNA solutions is Mason, Dhople & Wirtz, Macromolecules, 31,
3600–3603 (1998). With this in mind, we proceed as follows.

We calculate Ne(1) using Eq. 9.34 in Rubinstein & Colby for a θ-solvent

φe

φ∗ =
ce

c∗
= 10 =

Ne(1)
3
4

N
1 (39)
4

hence Ne = 123. Therefore the contour length of an entanglement strand is

Re = Rmax
Ne

N
= (5.58 × 104 nm)

(
123

= 3
186

)
.69 × 104 nm = 36.9 μm (40)

Likewise, the molar mass of an entanglement strand is given by

Me = M
Ne

N
= (1.1 × 108 g/mol)

(
123

= 7
186

)
.27 × 107 g/mol (41)

Finally, the plateau modulus at this concentration of 0.5 mg/mL and 30 oC can be calculated
using

Ge(φ) = Ge(1)
7

φ 3 =
ρRT

Me
φ

7
3 (42)

where we calculate the entanglement modulus first

(106 g/m3)(8.314 J/mol.K)(303 K)
Ge(1) = = 34.65 Pa (43)

(7.27 × 107 g/mol)

Now we can obtain the value of Ge(φ) by rewriting the equation as

φ
Ge(φ) = Ge(1)

( 7

φ∗

)
3

φ∗ 7 c
3 = Ge(1)

( 7

c∗

)
3

φ∗ 7 0
3 = (34.65 Pa)

(
.5 mg/mL

) 7

6.36 × 10−4 mg/mL

3

(0.017)
7
3 = 14.7 kPa

(44)
This number is very large for reasons quoted above.

(iii) The specific viscosity can be estimated by Eq. 9.47 in Rubinstein & Colby, namely
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φ
ηsp =

( 14

φ∗

)
3 N

2
3

[Ne(1)]2
=

(
c

c∗

) 14
3 N

2
3

[Ne(1)]2
=

(
0.5 mg/mL

6.36 × 10−4 mg/mL

) 14
3 186

2
3

= 7.01
1232

× 1010

(45)
So to calculate the solution viscosity, we have

η
ηsp

− η≡ s

ηs
≈ η

= 7.01
ηs

× 1010 (46)

and hence the solution viscosity is η = (7.01 × 1010)ηs = 7.01 × 107 Pa.s , which is again quite
large.

The relaxation time is given by τrep(φ) ≈ η/Ge(φ) = (7.01 × 107 Pa.s)/(14700 Pa) = 4770 s .

(iv) The relaxation time of an entangled melt is given in Eq. 9.8 in Rubinstein & Colby,

ζb2

τrep ≈
kT

N3

(47)
Ne

Here we have to estimate the drag coefficient in the melt ζ, however the background viscosity
is unknown. In the limit of concentrated solution with φ approaching unity, we can estimate
ζ ≈ ηsb. Hence, the relaxation time is

τrep ≈ ηsb
3 N3

kT Ne(1)
= 338 s (48)

In the case of the shortened DNA chains, the molecular weight is less than the entanglement
molecular weight calculated above in part (ii). Hence the Rouse relaxation time is relevant in
this regime. From Eq. 9.21 in Rubinstein & Colby, we can determine the Rouse relaxation for
the original chain,

τrep = 6τR

(
N

(49)
Ne

)

So the Rouse time of the original chain is τR = 37.3 s. Now, the determine the Rouse time of
the shortened DNA chains τR

′ , we have

τR
′

τR
=

(
N ′ 2

N

)
(50)

Accordingly, we have

τ ′
R = τR

(
N ′

N

)2

= (37.3 s)

(
1.86

2

186

)
= 3.73 ms (51)

The result is roughly five orders of magnitude smaller than the relaxation time of the melt.

(v) For a dilute solution of DNA, a CaBER test measures the Zimm relaxation time. The
Zimm time is given by Eq. 9.21 from Rubinstein & Colby
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η
τZ = 0.163 sR

3 η
= 0.163 s(

√

kT

Nb)3
(52)

kT

We note from part (i), that for a molecular weight of M = 1.1 × 108 g/mol, we have N = 186
Kuhn segments. So we estimate that the Zimm relaxation time is

τZ = 0.163
ηsR

3

kT
= 0.163

(1 × 10−3 Pa.s)
√

186(3 × 10−7 m)3
= 0.014 s

(1.38 × 10−23 J/K)(303 K)
(53)
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