2.29 Numerical Fluid Mechanics Spring 2015 - Lecture 9

REVIEW Lecture 8:

- Direct Methods for solving (linear) algebraic equations
- Gauss Elimination
- LU decomposition/factorization
- Error Analysis for Linear Systems and Condition Numbers
- Special Matrices (Tri-diagonal, banded, sparse, positive-definite, etc)
- Iterative Methods:

$$
\mathbf{x}^{k+1}=\mathbf{B ~ x}^{k}+\mathbf{c} \quad k=0,1,2, \ldots
$$

"Stationary" methods:

- Jacobi's method

$$
\mathbf{x}^{k+1}=-\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U}) \mathbf{x}^{k}+\mathbf{D}^{-1} \mathbf{b}
$$

- Gauss-Seidel iteration $\mathbf{x}^{k+1}=-(\mathbf{D}+\mathbf{L})^{-1} \mathbf{U} \mathbf{x}^{k}+(\mathbf{D}+\mathbf{L})^{-1} \mathbf{b}$

2.29 Numerical Fluid Mechanics Spring 2015 - Lecture 9

REVIEW Lecture 8, Iterative Methods Cont'd:

- Convergence: Necessary and sufficient condition

$$
\left.\rho(\mathbf{B})=\max _{i=1 . . n}\left|\lambda_{i}\right|<1, \quad \text { where } \lambda_{i}=\text { eigenvalue }\left(\mathbf{B}_{n \times n}\right) \quad \text { (ensures suffic. }\|\mathbf{B}\|<1\right)
$$

- Jacobi's method Sufficient conditions:
- Both converge if A stricly diagonally dominant
- Gauss-Seidel also convergent if \mathbf{A} sym. positive definite
- Gauss-Seidel iteration
(• Gauss-Seidel also convergent it A sym. positive detınite

$$
6
$$

- Successive Over-Relaxation Methods: (decrease $\rho(\mathbf{B})$ for faster convergence)

$$
\mathbf{x}_{i+1}=(\mathbf{D}+\omega \mathbf{L})^{-1}[-\omega \mathbf{U}+(1-\omega) \mathbf{D}] \mathbf{x}_{i}+\omega(\mathbf{D}+\omega \mathbf{L})^{-1} \mathbf{b}
$$

"Adaptive" methods:

- Gradient Methods $\mathbf{x}_{i+1}=\mathbf{x}_{i}+\alpha_{i} \mathbf{v}_{i}$
- Steepest decent

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\left(\frac{\mathbf{r}_{i}^{T} \mathbf{r}_{i}}{\mathbf{r}_{i}^{T} \mathbf{A r}}\right) \mathbf{r}_{i}
$$

$$
\left\{\begin{array}{l}
\frac{d Q(\mathbf{x})}{d \mathbf{x}}=\mathbf{A x}-\mathbf{b}=-\mathbf{r} \\
\mathbf{r}_{i}=\mathbf{b}-\mathbf{A} \mathbf{x}_{i}(\text { residual at iteration } i)
\end{array}\right.
$$

- Conjugate gradient

TODAY (Lecture 9)

- End of (Linear) Algebraic Systems
- Gradient Methods and Krylov Subspace Methods
- Preconditioning of $\mathbf{A x}=\mathbf{b}$
- FINITE DIFFERENCES
- Classification of Partial Differential Equations (PDEs) and examples with finite difference discretizations
- Error Types and Discretization Properties
- Consistency, Truncation error, Error equation, Stability, Convergence
- Finite Differences based on Taylor Series Expansions
- Higher Order Accuracy Differences, with Example
- Taylor Tables or Method of Undetermined Coefficients
- Polynomial approximations
- Newton's formulas, Lagrange/Hermite Polynomials, Compact schemes

References and Reading Assignments

- Chapter 14.2 on "Gradient Methods", Part 8 (PT 8.1-2), Chapter 23 on "Numerical Differentiation" and Chapter 18 on "Interpolation" of "Chapra and Canale, Numerical Methods for Engineers, 2006/2010/2014."
- Chapter 3 on "Finite Difference Methods" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, $3^{\text {rd }}$ edition, 2002"
- Chapter 3 on "Finite Difference Approximations" of "H. Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of Computational Fluid Dynamics (Scientific Computation). Springer, 2003"

Conjugate Gradient Method

- Derivation provided in lecture
- Check CGM_new.m
- Definition: "A-conjugate vectors" or "Orthogonality with respect to a matrix (metric)":
if \mathbf{A} is symmetric \& positive definite,
For $i \neq j$ we say v_{i}, v_{j} are orthogonal with respect to \mathbf{A}, if $v_{i}^{T} \mathbf{A} v_{j}=0$
- Proposed in 1952 (Hestenes/Stiefel) so that directions v_{i} are generated by the orthogonalization of residuum vectors (search directions are A-conjugate)
- Choose new descent direction as different as possible from old ones, within A-metric
- Algorithm:

$$
\begin{array}{rlrl}
\boldsymbol{v}_{0}=\boldsymbol{r}_{0} & =\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0} & & \\
& & \\
\text { do } & & \\
\alpha_{i} & =\left(\boldsymbol{v}_{i}^{\top} \boldsymbol{r}_{i}\right) /\left(\boldsymbol{v}_{i}^{\top} \boldsymbol{A} \boldsymbol{v}_{i}\right) & & \text { Step length } \\
\boldsymbol{x}_{i+1} & =\boldsymbol{x}_{i}+\alpha_{i} \boldsymbol{v}_{i} & & \text { Approximate solution } \\
\boldsymbol{r}_{i+1} & =\boldsymbol{r}_{i}-\alpha_{i} \boldsymbol{A} \boldsymbol{v}_{i} & & \text { New Residual } \\
\beta_{i} & =-\left(\boldsymbol{v}_{i}^{\top} \boldsymbol{A} \boldsymbol{r}_{i+1}\right) /\left(\boldsymbol{v}_{\boldsymbol{i}}^{\top} \boldsymbol{A} \boldsymbol{v}_{i}\right) & & \text { Step length \& } \\
\boldsymbol{v}_{i+1} & =\boldsymbol{r}_{i+1}+\beta_{i} \boldsymbol{v}_{\boldsymbol{i}} & & \text { new search direction }
\end{array}
$$

Note: $\boldsymbol{A} \boldsymbol{v}_{i}=$ one matrix vector multiply at each iteration

Figure indicates solution obtained using Conjugate gradient method (red) and steepest descent method (green).

solution with " n " iterations, but decent accuracy with much fewer

$$
\mathbf{A x}=\mathbf{b}
$$

$$
\begin{gathered}
\mathbf{b}, \mathbf{A} \mathbf{b}, \mathbf{A}^{2} \mathbf{b}, \cdots \\
n_{s} \leq n \quad \mathcal{K}_{n_{s}}=\operatorname{span}\left\{\mathbf{b}, \mathbf{A} \mathbf{b}, \cdots, \mathbf{A}^{n_{s}-1} \mathbf{b}\right\}
\end{gathered}
$$

$$
n_{s}
$$

- An iteration to do this is the "Arnoldi's iteration" which is a stabilized Gram

$$
x_{n} \text { are in } \mathcal{K}_{n}=\operatorname{span}\left\{\begin{array}{l}
\mathbf{b}, \mathbf{A} \mathbf{b} \\
\cdots, \mathbf{A}^{n-1} \mathbf{b}
\end{array}\right\}
$$

- Based on the idea of projecting the "Ax=b problem" into the

$$
\mathbf{x}_{n} \in \mathcal{K}_{n}
$$

$$
A x_{n}-\mathbf{b}
$$

Preconditioning of $\mathbf{A} \mathbf{x}=\mathbf{b}$

- Pre-conditioner approximately solves $\mathbf{A} \mathbf{x}=\mathbf{b}$.

Pre-multiply by the inverse of a non-singular matrix \mathbf{M}, and solve instead:

$$
\mathbf{M}^{-1} \mathbf{A} \mathbf{x}=\mathbf{M}^{-1} \mathbf{b} \quad \text { or } \quad \mathbf{A} \mathbf{M}^{-1}(\mathbf{M} \mathbf{x})=\mathbf{b}
$$

- Convergence properties based on $\mathbf{M}^{-1} \mathbf{A}$ or $\mathbf{A} \mathbf{M}^{-1}$ instead of \mathbf{A} !
- Can accelerate subsequent application of iterative schemes
- Can improve conditioning of subsequent use of non-iterative schemes: GE, LU, etc
- Jacobi preconditioning:
- Apply Jacobi a few steps, usually not efficient
- Other iterative methods (Gauss-Seidel, SOR, SSOR, etc):
- Usually better, sometimes applied only once
- Incomplete factorization (incomplete LU) or incomplete Cholesky
- LU or Cholesky, but avoiding fill-in of already null elements in A
- Coarse-Grid Approximations and Multigrid Methods:
- Solve $\mathbf{A x}=\mathbf{b}$ on a coarse grid (or successions of coarse grids)
- Interpolate back to finer grid(s)

Example of Convergence Studies for Linear Solvers

Courtesy of Society for Industrial and Applied Mathematics (SIAM). Used with permission.

Fig 7.5: Example 7.10, with system of size 961×961 : convergence behavior of various iterative schemes for the discretized Poisson equation.

Fig 7.7: Iteration progress for CG, PCG with the IC(0) preconditioner and PCG with the IC preconditioner using drop tolerance tol=0.01

IC(0): is incomplete Cholesky factorization. This is Cholesky as we have seen it, but a non-zero entry in the factorization is generated only if A was not zero there to begin with.

IC: same, but non-zero entry generated if it is \geq tol
PCG: Preconditioned conjugate gradient
Ascher and Greif (SIAM-2011)

Review of/Summary for Iterative Methods

Table removed due to copyright restrictions. Useful reference tables for this material: Tables PT3.2 and PT3.3 in Chapra, S., and R. Canale. Numerical Methods for Engineers. 6th ed. McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.

Review of/Summary for Iterative Methods

Table removed due to copyright restrictions. Useful reference tables for this material: Tables PT3.2 and PT3.3 in Chapra, S., and R. Canale. Numerical Methods for Engineers. 6th ed. McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.

FINITE DIFFERENCES - Outline

- Classification of Partial Differential Equations (PDEs) and examples with finite difference discretizations
- Elliptic PDEs
- Parabolic PDEs
- Hyperbolic PDEs
- Error Types and Discretization Properties
- Consistency, Truncation error, Error equation, Stability, Convergence
- Finite Differences based on Taylor Series Expansions
- Polynomial approximations
- Equally spaced differences
- Richardson extrapolation (or uniformly reduced spacing)
- Iterative improvements using Roomberg's algorithm
- Lagrange polynomial and un-equally spaced differences
- Compact Difference schemes

Continuum Model

$$
\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x}=0
$$

Sommerfeld Wave Equation (c= wave speed). This radiation condition is sometimes used at open boundaries of ocean models.

Differential Equation

$$
L(p, w, x, t)=0
$$

"Differentiation" "Integration"

Difference Equation

$L_{m n}\left(p_{m n}, w_{m n}, x_{n}, t_{m}\right)=0$
System of Equations

$$
\sum_{j=0}^{N-1} F_{i}\left(w_{j}\right)=B_{i}
$$

Linear System of Equations

$$
\sum_{j=0}^{N-1} A_{i j} w_{j}=B_{i}
$$

"Solving linear equations"

Eigenvalue Problems

$$
\overline{\overline{\mathbf{A}}} \mathbf{u}=\lambda \mathbf{u} \Leftrightarrow(\overline{\overline{\mathbf{A}}}-\lambda \overline{\overline{\mathbf{I}}}) \mathbf{u}=\mathbf{0}
$$

$$
\begin{aligned}
& t_{m}=t_{0}+m \Delta t, \quad m=0,1, \ldots M-1 \\
& x_{n}=x_{0}+n \Delta x, \quad n=0,1, \ldots N-1
\end{aligned}
$$

$$
\frac{\partial w}{\partial t} \simeq \frac{\Delta w}{\Delta t}, \quad \frac{\partial w}{\partial x} \simeq \frac{\Delta w}{\Delta x}
$$

p parameters, e.g. variable c

Classification of Partial Differential Equations

(2D case, $2^{\text {nd }}$ order PDE)

Quasi-linear PDE for $\phi(x, y)$

$$
A \phi_{x x}+B \phi_{x y}+C \phi_{y y}=F\left(x, y, \phi, \phi_{x}, \phi_{y}\right)
$$

$$
\begin{aligned}
& \text { A,B and C Constants } \\
& \begin{array}{rll}
B^{2}-4 A C>0 & \text { Hyperbolic } \\
B^{2}-4 A C=0 & \text { Parabolic } \\
B^{2}-4 A C<0 & \text { Elliptic }
\end{array}
\end{aligned}
$$

(Only valid for two independent variables: x, y)

- In general: A, B and C are function of: $x, y, \phi, \phi_{x}, \phi_{y}$
- Equations may change of type from point to point if A, B and C vary with x, y, etc.
- Navier-Stokes, incomp., const. viscosity: $\frac{D \mathbf{u}}{D t}=\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \mathbf{u}+\mathbf{g}$

Classification of Partial Differential Equations
 (2D case, $2^{\text {nd }}$ order PDE)

Meaning of Hyperbolic, Parabolic and Elliptic

- The general $2^{\text {nd }}$ order PDE in 2D:

$$
A \phi_{x x}+B \phi_{x y}+C \phi_{y y}=F
$$

is analogous to the equation for a conic section:

$$
A x^{2}+B x y+C y^{2}=F
$$

- Conic section:

- Is the intersection of a right circular cone and a plane,

Images courtesy of Duk on Wikipedia. License: $\overline{\mathrm{CC}-\mathrm{BY}}$. which generates a group of plane curves, including the circle, ellipse, hyperbola, and parabola

- One characterizes the type of conic sections using the discriminant $B^{2}-4 A C$
- PDE:
- $B^{2}-4 A C>0$ (Hyperbolic)
- $B^{2}-4 A C=0$ (Parabolic)
- $B^{2}-4 A C<0$ (Elliptic)

Examples

$$
\frac{\partial T}{\partial t}=\frac{\kappa}{\rho c} \nabla^{2} T+f, \quad\left(\underset{\left.\alpha=\frac{\kappa}{\rho c}\right) \quad}{ } \quad \begin{array}{l}
\text { Heat conduction equation, }
\end{array}\right.
$$

$$
\frac{\partial \mathbf{u}}{\partial t}=v \nabla^{2} \mathbf{u}+\mathbf{g}
$$

Unsteady, diffusive, small amplitude flows or perturbations (e.g. Stokes Flow)

- Usually smooth solutions ("diffusion effect" present)
- "Propagation" problems
- Domain of dependence of solution is domain $D(x, y$, and $0<t<\infty)$:
- Finite Differences/Volumes, Finite Elements

Partial Differential Equations Parabolic PDE - Example

Heat Conduction Equation
$\kappa T_{x x}(x, t)=\rho c T_{t}(x, t), 0<x<L, 0<t<\infty$
Initial Condition

$$
T(x, 0)=f(x), 0 \leq x \leq L
$$

Boundary Conditions

$$
\begin{aligned}
& T(0, t)=g_{1}, 0<t<\infty \\
& T(L, t)=g_{2}, 0<t<\infty
\end{aligned}
$$

IVP in one dimension (t), BVP in the other (x)
κ Thermal conductivity
c Specific heat capacity
ρ Density
T Temperature
 Time Marching, Explicit or Implicit Schemes

IVP: Initial Value Problem
BVP: Boundary Value Problem

Partial Differential Equations Parabolic PDE - Example

Heat Conduction Equation

$$
\begin{gathered}
T_{t}(x, t)=\alpha T_{x x}(x, t), 0<x<L, 0<t<\infty \\
\alpha=\frac{\kappa}{\rho c}
\end{gathered}
$$

Initial Condition

$$
T(x, 0)=f(x), 0 \leq x \leq L
$$

Boundary Conditions

$$
\begin{aligned}
& T(0, t)=g_{1}(t), 0<t<\infty \\
& T(L, t)=g_{2}(t), 0<t<\infty
\end{aligned}
$$

Partial Differential Equations Parabolic PDE - Example

Equidistant Sampling

$$
\begin{aligned}
h & =L / n \\
k & =T / m
\end{aligned}
$$

Discretization

$$
\begin{aligned}
x_{i} & =(i-1) h, i=2, \ldots, n-1 \\
t_{j} & =(j-1) k, j=1, \ldots, m
\end{aligned}
$$

Forward (Euler) Finite Difference in time

$$
T_{t}(x, t)=\frac{T\left(x_{i}, t_{j+1}\right)-T\left(x_{i}, t_{j}\right)}{k}+O(k)
$$

Centered Finite Difference in space

$$
\begin{gathered}
T_{x x}(x, t)=\frac{T\left(x_{i-1}, t_{j}\right)-2 T\left(x_{i}, t_{j}\right)+T\left(x_{i+1}, t_{j}\right)}{h^{2}}+O\left(h^{2}\right) \\
T_{i, j}=T\left(x_{i}, t_{j}\right)
\end{gathered}
$$

Finite Difference Equation

$$
\frac{T_{i, j+1}-T_{i, j}}{k}=\alpha \frac{T_{i-1, j}-2 T_{i, j}+T_{i+1, j}}{h^{2}}
$$

Partial Differential Equations ELLIPTIC: $\quad B^{2}-4 \mathrm{~A} C<0$

Quasi-linear PDE for $\phi(x, y)$

$$
\begin{aligned}
& A \phi_{x x}+B \phi_{x y}+C \phi_{y y}=F\left(x, y, \phi, \phi_{x}, \phi_{y}\right) \\
& \text { A,B and C Constants } \\
& B^{2}-4 A C>0 \\
& B^{2}-4 A C \text { Hyperbolic } \\
& B^{2}-4 A C<0 \\
& \text { Parabolic } \\
& \text { Elliptic }
\end{aligned}
$$

Partial Differential Equations Elliptic PDE

Laplace Operator

$$
\nabla^{2} \equiv u_{x x}+u_{y y}
$$

$$
\begin{aligned}
& \text { Examples: } \begin{aligned}
& \nabla^{2} \phi=0 \\
& \nabla^{2} \phi=g(x, y) \longleftarrow \\
& \nabla^{2} u+f(x, y) u=0 \\
& \mathbf{U} \cdot \nabla \mathbf{u}=v \nabla^{2} \mathbf{u} \begin{array}{l}
\text { Poisson Equation Equation - Potential Flow } \\
\text { • Potential Flow with sources }
\end{array} \\
& \text { • Steady heat conduction in plate + source }
\end{aligned} \\
& \begin{array}{l}
\text { Helmholtz equation - Vibration of plates }
\end{array} \\
& \text { Steady Convection-Diffusion }
\end{aligned}
$$

- Smooth solutions ("diffusion effect")
- Very often, steady state problems
- Domain of dependence of u is the full domain $\mathrm{D}(\mathrm{x}, \mathrm{y})$ => "global" solutions
- Finite differ./volumes/elements, boundary integral methods (Panel methods)

Partial Differential Equations Elliptic PDE - Example

$$
0 \leq x \leq a, \quad 0 \leq y \leq b
$$

Equidistant Sampling

$$
\begin{aligned}
h & =a /(n-1) \\
h & =b /(m-1)
\end{aligned}
$$

Discretization

$$
\begin{aligned}
& x_{i}=(i-1) h, i=1, \ldots, n \\
& y_{j}=(j-1) h, j=1, \ldots, m
\end{aligned}
$$

Finite Differences
$u_{x x}(x, t)=\frac{u\left(x_{i-1}, y_{j}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i+1}, y_{j}\right)}{h^{2}}+O\left(h^{2}\right)$

$u_{y y}(x, t)=\frac{u\left(x_{i}, y_{j-1}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i}, y_{j+1}\right)}{h^{2}}+O\left(h^{2}\right)$
Dirichlet BC

Partial Differential Equations Elliptic PDE - Example

Discretized Laplace Equation

$\nabla^{2} u=\frac{u\left(x_{i-1}, y_{j}\right)+u\left(x_{i}, y_{j-1}\right)-4 u\left(x_{i}, y_{j}\right)+u\left(x_{i+1}, y_{j}\right)+u\left(x_{i}, y_{j+1}\right)}{h^{2}}=0$

$$
u_{i, j}=u\left(x_{i}, t_{j}\right)
$$

Finite Difference Scheme
$u_{i+1, j}+u_{i-1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}=0$

Boundary Conditions

$$
\begin{aligned}
& u\left(x_{1}, y_{j}\right)=u_{1, j}, 2 \leq j \leq m-1 \\
& u\left(x_{n}, y_{j}\right)=u_{n, j}, 2 \leq j \leq m-1 \\
& u\left(x_{i}, y_{1}\right)=u_{i, 1}, 2 \leq i \leq n-1 \\
& u\left(x_{i}, y_{n}\right)=u_{i, n}, \quad 2 \leq i \leq n-1
\end{aligned}
$$

Global Solution Required

MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

