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REVIEW Lecture 24:
• Finite Volume on Complex geometries

– Computation of convective fluxes:
• For mid-point rule:

– Computation of diffusive fluxes: mid-point rule for complex geometries often used
• Either use shape function  (x, y), with mid-point rule:

• Or compute derivatives at CV centers first, then interpolate to cell faces. Option include either:

– Gauss Theorem:

– Deferred-correction approach:

– Comments on 3D
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ecture 25

REVIEW Lecture 24, Cont’d:

– Properties of Turbulent Flows
• Stirring and Mixing

• Energy Cascade and Scales

• Turbulent Wavenumber Spectrum and Scales

– Numerical Methods for Turbulent  Flows: Classification
• Direct Numerical Simulations (DNS) for Turbulent Flows

• Reynolds-averaged Navier-Stokes (RANS)
– Mean and fluctuations

– Reynolds Stresses

– Turbulence closures: Eddy viscosity and diffusivity, Mixing-length Models, k-ε Models

– Reynolds-Stress Equation Models

• Large-Eddy Simulations (LES)
– Spatial filtering

– LES subgrid-scale stresses

• Examples
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ε = turbulent energy dissipation

η (Kolmogorov microscale)

• Turbulent Flows and their Numerical Modeling

Image by MIT OpenCourseWare.
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• Durbin, Paul A., and Gorazd Medic. Fluid dynamics with a 
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Direct Numerical Simulations (DNS)

for Turbulent Flows
• Most accurate approach 

– Solve NS with no averaging or approximation other than numerical 

discretizations whose errors can be estimated/controlled

• Simplest conceptually, all is resolved:

– Size of domain must be at least a few times the distance L over which 

fluctuations are correlated (L= largest eddy scale)

– Resolution must capture all kinetic energy dissipation, i.e. grid size must be 

smaller than viscous scale, the Kolmogorov scale, 

– For homogenous isotropic turbulence, uniform grid is adequate, hence number 

of grid points (DOFs) in each direction is (Tennekes and Lumley, 1976):

– In 3D, total cost (if time-step scales as grid size, for stability and/or accuracy):

• CPU and RAM limit the size of the problem:

– 10 Peta-Flops/s for 1 hour:                      (extremely optimistic)

– Largest DNS ever performed up to 2013:  15360 x 1536 x 11520 mesh,
• https://www.alcf.anl.gov/articles/first-mira-runs-break-new-ground-turbulence-simulations
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Direct Numerical Simulations (DNS)

for Turbulent Flows: Numerics

• DNS likely gives more information that many engineers need 

(closer to experimental data)

• But, it can be used for turbulence studies, e.g. coherent 

structures dynamics and other fundamental research

– Allow to construct better RANS models or even correlation models

• Numerical Methods for DNS

DNS, Backward facing step
Le and Moin (2008)– All NS solvers we have seen are useful

– Small time-steps required for bounded errors:

– Explicit methods are fine in simple geometries (stability 

satisfied due to small time-step needed for accuracy)

– Implicit methods near boundaries or complex geometries 

(large derivatives in viscous terms normal to the walls can
 

lead to numerical instabilities ⇒ treated implicitly)

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Direct Numerical Simulations (DNS)

for Turbulent Flows: Numerics, Cont’d

• Time-marching methods commonly used

– Explicit 2nd to 4th order accurate (Runge-Kutta, Adams-Bashforth, 

Leapfrog): R-K’s often more accurate for same cost

• For same order of accuracy, R-K’s allow larger time-steps

– Crank-Nicolson often used for implicit schemes

• Must be conservative, including kinetic energy

• Spatial discretization schemes should have low dissipation

– Upwind schemes often too diffusive: error larger than molecular diffusion!

– High-order finite difference

– Spectral methods (use Fourier series to estimate derivatives) 

• Mainly useful for simple (periodic) geometries (FFT)

• Use spectral elements instead (Patera, Karnadiakis, etc)

– (Hybridizable)-(Discontinuous)-Galerkin (FE Methods): Cockburn et al.
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Direct Numerical Simulations (DNS)

for Turbulent Flows: Numerics, Cont’d
• Challenges: 

– Storage for states at intermediate time steps (⇒ R-K’s of low storage)

– Total discretization error and turbulence spectrum

• Total error: both order of discretization and values of derivatives (spectrum)

 Measure of total error: integrate over whole turbulent spectrum 

– Difficult to measure accuracy due to (unstable) nature of turbulent flow

• Due to predictability limit of turbulence

• Hence, statistical properties of two solutions are often compared

– Simplest measure: turbulent spectrum

– Generating initial conditions: as much art as science

• Initial conditions remembered over significant “eddy-turnover” time

• Data assimilation, smoothing schemes to obtain ICs

– Generating boundary conditions

• Periodic for simple problems, Radiating/Sponge conditions for realistic cases
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Example: Spatial Decay of Turbulence 

Created by an Oscillating Boundary

Briggs et al (1996)

– Oscillating grid on top of 

quiescent fluid creates 

turbulence

– Decays in intensity away from 

grid by “turbulent diffusion”: 

stirring + mixing 

– Used spectral method, 

periodic, 3rd order R-K

– DNS results agree with data 
• Used to test turbulence 

“closure” models

• Did not work well because 

not derived for that “type” of 

turbulence

Note: DNS have at times found out when laboratory set-up was not proper

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
Source: Ferziger, J. and M. Peric. Computational Methods for Fluid Dynamics.
3rd ed. Springer, 2001.

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
Source: Ferziger, J. and M. Peric. Computational Methods for Fluid Dynamics.
3rd ed. Springer, 2001.

http://ocw.mit.edu/fairuse
http://ocw.mit.edu/fairuse


Reynolds-averaged Navier-Stokes (RANS)

• Many science and engineering applications focus on averages

• RANS models: based on ideas of Osborne Reynolds

– All “unsteadiness” regarded as part of turbulence and averaged out

– By averaging, nonlinear terms in NS eqns. lead to new product terms that 

must be modeled

• Separation into mean and fluctuations

– Moving time-average:

– Ensemble average:

– Reynolds-averaging: either of the

above two averages
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Graphs showing (A) the time average for a statistically steady flow and 
(B) the ensemble average for an unsteady flow.
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Reynolds-averaged Navier-Stokes (RANS)

• Variance, r.m.s. and higher-moments:

• Correlations:

– In time:

– In space:

• Turbulent kinetic energy:

– Note: some arbitrariness in the decomposition 

and in the definition that “fluctuations = turbulence”
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Reynolds-averaged Navier-Stokes (RANS)

• Continuity and Momentum Equations, incompressible:

– Applying either the ensemble or time-averages to these equations 

leads to the RANS eqns.

– In both cases, averaging any linear term in conservation equation 

gives the identical term, but for the average quantity

• Average the equations, inserting the decomposition:

– the time and space derivatives commute with the averaging operator
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Reynolds-averaged Navier-Stokes (RANS)

• Averaged continuity and momentum equations:

where

• For a scalar conservation equation

– e.g. for                mean internal energy

– Terms that are products of fluctuations remain:

• Reynolds stresses:

• Turbulent scalar flux: 

– Equations are thus not closed (more unknown variables than equations)

• Closure requires specifying                              in terms of the mean quantities and/or 

their derivatives (any Taylor series decomposition of mean quantities)
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Reynolds Stresses:

• Total stress acting on mean flow:

– If turbulent fluctuations are isotropic:

• Off diagonal elements of      cancel

• Diagonal elements equal:

– Average of product of fluctuations not zero

• Consider mean shear flow: 

• If parcel is going up (v’>0 ), it slows down 

neighbors, hence u’<0  (opposite for v’<0)

• Hence:                                 (acts as turb. “diffus.”)

– Other meanings of Reynolds stress: 

• Rate of mean momentum transfer by turb. fluctations

• Average flux of j-momentum along i-direction
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Simplest Turbulence Closure Model

• Eddy Viscosity and Eddy Diffusivity Models

– Effect of turbulence is to increase stirring/mixing on the mean-fields, 

hence increase effective viscosity or effective diffusivity

– Hence,  “Eddy-viscosity”  Model     and    “Eddy-diffusivity” Model

• Last term in Reynolds stress is required to ensure correct results for the sum 

of normal stresses: 

• The use of scalar               assumption of isotropic turbulence, which is often 

inaccurate

• Since turbulent transports (momentum or scalars, e.g. internal energy) are due 

to “average stirring” or “eddy mixing”, we expect similar values for               . 

This is the so-called Reynolds analogy, i.e. Turbulent Prandtl number ~ 1:
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Turbulence Closures: M
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ixing-Length Models

– Mixing length models attempt to vary unknown μt  as a function of position

– Main parameters available: turbulent kinetic energy k  [m2/s2] or velocity u*,
large eddy length scale L

=> Dimensional analysis:

– Observations and assumptions:

•Most k is contained in largest eddies of mixing-length L

•Largest eddies interact most with mean flow

– Hence,                    . This is Prandtl’s “mixing length” model.

•Similar to mean-free path in thermodyn: distance before parcel “mixes” with others

•For a plate flow, Prandtl assumed:

– Mixing-length turbulent Reynolds stress: 

– Mixing length model can also be used for scalars:
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Mixing Length Models: What is         ?

• In simple 2D flows, mixing-length models agree well with data

• In these flows, mixing length L proportional to physical size (D, etc)

• Here are some examples:

• But, in general turbulence, more than one space and time scale!
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( )mLMixing Length Models: What is         ?Mixing Length Models: What is         ?( )Mixing Length Models: What is         ?Mixing Length Models: What is         ?mMixing Length Models: What is         ?Mixing Length Models: What is         ?( )Mixing Length Models: What is         ?mMixing Length Models: What is         ?( )Mixing Length Models: What is         ?

© The McGraw-Hill Companies. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Source: Schlichting, H. Boundary Layer Theory. 7th ed. The McGraw-Hill Companies, 1979.

http://ocw.mit.edu/fairuse
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Turbulence Closures: k - ε Models

• Mixing-length = “zero-equation” Model

• One might find a PDE to compute                                 as a function 

of k and other turbulent quantities

– Turbulence model requires at least a length scale and a velocity scale, 

hence two PDEs?

• Kinetic energy equations (incompressible flows)

– Define                                             ,                      and  

– Mean KE: Take mean mom. eqn., multiply by     to obtain: 
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Turbulence Closures: k - ε Models, Cont’d

• Turbulent kinetic energy equation

– Obtain momentum eq. for the turbulent velocity       (total eq. - mean eq.)

– Define the fluctuating strain rate:

– Multiply by      (sum over i) and average to obtain the eqn. for

• This equation is similar than that of K, but with prime quantities

• Last term is now opposite in sign: is the rate of shear production of k :

• Next to last term = rate of viscous dissipation of k :

• These two terms often of the same order (this is how Kolmogorov microscale is defined)

– e.g. consider steady state turbulence (steady k)

– If Boussinesq fluid, the 2 KE eqs. also contain buoyant loss/production terms
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Turbulence Closures: k - ε Models, Cont’d

• Parameterizations for the standard k equation:

– For incompressible flows, the viscous transport term is:  

– The other two turbulent energy transport terms are thus modeled using:

• This is analogous to an “eddy-diffusion of a scalar” model, recall:

• In some models, eddy-diffusions are tensors

– The production term: using again the eddy viscosity model for the Rey. Stresses

– All together, we have all “unknown” terms for the k equation parameterized, 

as long as                  the rate of viscous dissipation of k is known: 
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Turbulence Closures: k - ε Models, Cont’d

• The standard k - ε model equations (Launder and Spalding, 1974)

– There are several choices for                                    . The standard 

popular one is based on the “equilibrium turbulent flows” hypothesis:

• In “equilibrium turbulent flows”, ε the rate of viscous dissipation of k is in 

balance with Pk the rate of production of k  (i.e. the energy cascade): 

• Recall the scalings:

• This gives the length scale and the turbulent viscosity scalings: 

– As a result, one can obtain an equation for ε (with a lot of assumptions):

where                   and                     are constants.  The production and destruction terms

of ε are assumed proportional to those of k   (the ratios ε / k  is for dimensions)
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Turbulence Closures: k - ε Models, Cont’d

• The standard k - ε model (RANS) equations are thus:

• The Reynolds stresses are obtained from:

• The most commonly used values for the constants are:

• Two new PDEs are relatively simple to implement (same form as NS)

– But, time-scales for k - ε are much shorter than for the mean flow

• Other k – ε models: Spalart-Allmaras ν – L; Wilcox or Menter k – ω; anisotropic k –ε’s; 

etc.
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Turbulence Closures: k - ε Models, Cont’d

• Numerics for standard k - ε models

– Since time-scales for k - ε are much shorter than for the mean flow, 

their equations are treated separately

• Mean-flow NS outer iteration can be first performed using old k - ε

• Strongly non-linear equations for k - ε are then integrated (outer-iteration) 

with smaller time-step and under-relaxation

– Smaller space scales requires finer-grids near walls for k – ε eqns

• Otherwise, too low resolution can lead to wiggles and negative k - ε

• If grids are the same, need to use schemes that reduce oscillations

• Boundary conditions for k - ε models

– Similar than for other scalar eqns., except at solid walls

• Inlet:  k, ε given   (from data or from literature)

• Outlet or symmetry axis:  normal derivatives set to zero  (or other OBCs)

• Free stream:  k, ε given or zero-derivatives

• Solid walls:  depends on Re
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• Combining, one obtains:                           and one can match:

without resolving the viscous sub-layer 

• For more details, including low-Re cases, see references

Turbulence Closures: k - ε Models, Cont’d

• Solid-walls boundary conditions for k - ε models

– No-slip BC would be standard: 

• Hence, appropriate to set k = 0 at the wall

• But, dissipation not zero at the wall → use : 

– At high-Reynolds numbers:

22 1/2

2
wall wall

  or   2k k
n n

   
  

   
  

• One can avoid the need to solve 

k – ε right at the wall by using an 

analytical shape “wall function”:

• At high-Re, in logarithmic layer : 

• If dissipation balances turbulence 

production, recall:
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Turbulence Closures: k - ε Models, Cont’d

• Example: Flow around an engine Valve (Lilek et al, 1991)

– k – ε model, 2D axi-symmetric

– Boundary-fitted, structured grid

– 2nd order CDS, 3-grids refinement

– BCs: wall functions at the walls

– Physics: separation at valve throat

– Comparisons with data not bad

– Such CFD study can reduce number 

of experiments/tests required

Please also see figures 9.13 and 9.14 from Figs 9.13 and 9.14 from Ferziger, J.,

and M. Peric. Computational Methods for Fluid Dynamics. 3rd ed. Springer, 2001.

© Springer. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Reynolds-Stress Equation Models (RSMs)

• Underlying assumption of “Eddy viscosity/diffusivity” models 

and of k - ε models is that of isotropic turbulence, which fails in 

many flows 

– Some have used anisotropic eddy-terms, but not common

• Instead, one can directly solve transport equations for the 

Reynolds stresses themselves:

– These are among the most complex RANS used today. Their equations 

can be derived from NS

– For momentum, the six transport eqs., one for each Reynolds stress, 

contain: diffusion, pressure-strain and dissipation/production terms 

which are unknown

• In these “2nd order models”, assumptions are made on these terms and 

resulting PDEs are solved, as well as an equation for ε

• Extra 6 + 1 = 7 PDEs to be solved increase cost. Mostly used for academic 

research (assumptions on unknown terms still being compared to data)

   and   i j iu u u      
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Reynolds-Stress Equation Models (RSMs), Cont’d

• Equations for

where 

• The dissipation (as ε but now a tensor) is :

• The 3rd order turbulence diffusions are:

– Simplest and most common 3rd order closures:

• Isotropic dissipation:                                        → one ε PDE must be solved

• Several models for pressure-strain used (attempt to make it more isotropic), 

see Launder et al)

• The 3rd order turbulence diffusions: usually modeled using an eddy-flux model, 

but nonlinear models also used

• Active research
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Large Eddy Simulation (LES)

• Turbulent Flows contain large range of time/space scales 

• However, larger-scale motions 

often much more energetic 

than small scale ones 

• Smaller scales often provide 

less transport

→ simulation that treats larger eddies more accurately than 
smaller ones makes sense ⇒ LES: 

• Instead of time-averaging, LES uses spatial filtering to separate large 
and small eddies

• Models smaller eddies as a “universal behavior”

• 3D, time-dependent and expensive, but much less than DNS

• Preferred method at very high Re or very complex geometry

LES

DNS (B)

DNS LES

(A)

(A) The time dependence of a component of velocity at one point; (B) Representation of
 turbulent motion.

u

t

Image by MIT OpenCourseWare.
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Large Eddy Simulation (LES), Cont’d

• Spatial Filtering of quantities

– The larger-scale (the ones to be resolved) are essentially a local spatial 

average of the full field

– For example, the filtered velocity is:

where                  is the filter kernel, a localization function of support/cutoff 

width Δ

• Example of Filters: Gaussian, box, top-hat and spectral-cutoff (Fourier) filters

• When NS, incompressible flows, constant density is averaged, 

one obtains

– Continuity is linear, thus filtering does not change its shape

– Simplifications occur if filter does not depend on positions: 
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Large Eddy Simulation (LES), Cont’d

• LES sub-grid-scale stresses

– It is important to note that

– This quantity is hard to compute

– One introduces the sub-grid-scale Reynolds Stresses, which is the 

difference between the two:

• It represents the large scale momentum flux caused by the action of the small 

or unresolved scales (SG is somewhat a misnomer)

– Example of models: 

• Smagorinsky: it is an eddy viscosity model

• Higher-order SGS models

• More advanced models: mixed models, dynamic models, deconvolution

models, etc.

– Mixed eqns, e.g. Partially-averaged Navier-Stokes (PANS): RANS → LES

i j i ju u u u 
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Examples (see Durbin and Medic, 2009)

Figures removed due to copyright restrictions. Please see figures 6.1, 6.2, 6.22, 6.23, 6.26, and 6.27 in
Durbin, P. and G. Medic. Fluid Dynamics with a Computational Perspective. Vol. 10. Cambridge University
Press, 2007. [Preview with Google Books].

https://books.google.com/books?id=4clIj_YBD6MC&pg=PA212&lpg=PA212#v=onepage&q&f=false
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Examples (see Durbin and Medic, 2009)

Figures removed due to copyright restrictions. Please see figures 6.1, 6.2, 6.22, 6.23, 6.26, and 6.27 in
Durbin, P. and G. Medic. Fluid Dynamics with a Computational Perspective. Vol. 10. Cambridge University
Press, 2007. [Preview with Google Books].

https://books.google.com/books?id=4clIj_YBD6MC&pg=PA212&lpg=PA212#v=onepage&q&f=false
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Examples (see Durbin and Medic, 2009)

Figures removed due to copyright restrictions. Please see figures 6.1, 6.2, 6.22, 6.23, 6.26, and 6.27 in
Durbin, P. and G. Medic. Fluid Dynamics with a Computational Perspective. Vol. 10. Cambridge University
Press, 2007. [Preview with Google Books].

https://books.google.com/books?id=4clIj_YBD6MC&pg=PA212&lpg=PA212#v=onepage&q&f=false
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Examples (see Durbin and Medic, 2009)

Figures removed due to copyright restrictions. Please see figures 6.1, 6.2, 6.22, 6.23, 6.26, and 6.27 in
Durbin, P. and G. Medic. Fluid Dynamics with a Computational Perspective. Vol. 10. Cambridge University
Press, 2007. [Preview with Google Books].

https://books.google.com/books?id=4clIj_YBD6MC&pg=PA212&lpg=PA212#v=onepage&q&f=false
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