2.29 Numerical Fluid Mechanics Spring 2015 - Lecture 12

REVIEW Lecture 11:

- Finite Differences based Polynomial approximations
- Obtain polynomial (in general un-equally spaced), then differentiate as needed
- Newton's interpolating polynomial formulas

Triangular Family of Polynomials (case of Equidistant Sampling, similar if not equidistant)

$$
\begin{aligned}
f(x) & =f_{0}+\frac{\Delta f_{0}}{h}\left(x-x_{0}\right)+\frac{\Delta^{2} f_{0}}{2!h^{2}}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots \\
& +\frac{\Delta^{n} f_{0}}{n!h^{n}}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)+\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)
\end{aligned}
$$

- Lagrange polynomial
(Reformulation of Newton's polynomial)

$$
f(x)=\sum_{k=0}^{n} L_{k}(x) f\left(x_{k}\right) \quad \text { with } \quad L_{k}(x)=\prod_{j=0, j \neq k}^{n} \frac{x-x_{j}}{x_{k}-x_{j}}
$$

- Hermite Polynomials and Compact/Pade's Difference schemes
(Use the values of the function and its derivative(s) at nodes)

$$
\sum_{i=-r}^{s} b_{i}\left(\frac{\partial^{m} u}{\partial x^{m}}\right)_{j+i}-\sum_{i=-p}^{q} a_{i} u_{j+i}=\tau_{\Delta x}
$$

- Finite Difference: Boundary conditions
- Different approx. at and near the boundary => impacts global order of accuracy and linear system to be solved

2.29 Numerical Fluid Mechanics Spring 2015 - Lecture 12

REVIEW Lecture 11:

- Finite Difference: Boundary conditions
- Different approx. at and near the boundary => impacts linear system to be solved
- Finite-Differences on Non-Uniform Grids and Uniform Errors: 1-D
- If non-uniform grid is refined, error due to the $1^{\text {st }}$ order term decreases faster than that of $2^{\text {nd }}$ order term
- Convergence becomes asymptotically $2^{\text {nd }}$ order ($1^{\text {st }}$ order term cancels)
- Grid-Refinement and Error estimation
- Estimation of the order of convergence and of the discretization error
- Richardson's extrapolation and Iterative improvements using Roomberg's algorithm

FINITE DIFFERENCES - Outline for Today

- Finite-Differences on Non-Uniform Grids and Uniform Errors: 1-D
- Grid Refinement and Error Estimation
- Fourier Analysis and Error Analysis
- Differentiation, definition and smoothness of solution for \neq order of spatial operators
- Stability
- Heuristic Method
- Energy Method
- Von Neumann Method (Introduction) : 1st order linear convection/wave eqn.
- Hyperbolic PDEs and Stability
- Example: 2nd order wave equation and waves on a string
- Effective numerical wave numbers and dispersion
- CFL condition:
- Definition
- Examples: 1st order linear convection/wave eqn., 2nd order wave eqn., other FD schemes
- Von Neumann examples: 1st order linear convection/wave eqn.
- Tables of schemes for 1st order linear convection/wave eqn.

References and Reading Assignments

- Lapidus and Pinder, 1982: Numerical solutions of PDEs in Science and Engineering. Section 4.5 on "Stability".
- Chapter 3 on "Finite Difference Methods" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, $3^{\text {rd }}$ edition, 2002"
- Chapter 3 on "Finite Difference Approximations" of "H. Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of Computational Fluid Dynamics (Scientific Computation). Springer, 2003"
- Chapter 29 and 30 on "Finite Difference: Elliptic and Parabolic equations" of "Chapra and Canale, Numerical Methods for Engineers, 2014/2010/2006."

Grid-Refinement and Error estimation

- We found that for a convergent scheme, the discretization error ε is of the form: $\quad \underline{\varepsilon=\alpha O\left(\Delta x^{p}\right)+R} \quad$ (recall: $\left.\phi=\hat{\phi}+\varepsilon, \quad \mathcal{L}(\phi)=0, \quad \hat{\mathcal{L}}_{\Delta x}(\hat{\phi})=0\right)$ where R is the remainder
- The degree of accuracy and discretization error can be estimated between solutions obtained on systematically refined/coarsened grids
-True solution u can be expressed either as: $\left\{\begin{array}{l}u=u_{\Delta x}+\beta \Delta x^{p}+R \\ u=u_{2 \Delta x}+\beta^{\prime}(2 \Delta x)^{p}+R^{\prime}\end{array}\right.$
-Thus, the exponent p can be estimated:

$$
p \approx \log \left(\frac{u_{2 \Delta x}-u_{4 \Delta x}}{u_{\Delta x}-u_{2 \Delta x}}\right) / \log 2
$$ (need to eliminate u and then need 2 eqns. to eliminate both Δx and p, hence $u_{4 \Delta x}$)

-The discretization error on the grid Δx can be estimated by: $\varepsilon_{\Delta x} \approx \frac{u_{\Delta x}-u_{2 \Delta x}}{2^{p}-1}$
-Good idea: estimate p to check code. Is it equal to what it is supposed to be?
-When solutions on several grids are available, an approximation of higher accuracy can be obtained from the remainder: Richardson Extrapolation!

Richardson Extrapolation and Romberg Integration

Richardson Extrapolation: method to obtain a third improved estimate of an integral based on two other estimates
Consider:

$$
I=I(h)+E(h)
$$

For two different grid space h 1 and h 2 :

$$
I\left(h_{1}\right)+E\left(h_{1}\right)=I\left(h_{2}\right)+E\left(h_{2}\right)
$$

$$
\begin{aligned}
& \text { Trapezoidal Rule: } \\
& \qquad E(h)=-\frac{b-a}{12} h^{2} \bar{f}^{\prime \prime} \\
& \Rightarrow E\left(h_{1}\right) \approx E\left(h_{2}\right)\left(\frac{h_{1}}{h_{2}}\right)^{2}
\end{aligned}
$$

$$
E\left(h_{2}\right) \simeq \frac{I\left(h_{1}\right)-I\left(h_{2}\right)}{1-\left(h_{1} / h_{2}\right)^{2}}
$$

Richardson Extrapolation:

$$
I=I\left(h_{2}\right)+\frac{I\left(h_{2}\right)-I\left(h_{1}\right)}{\left(h_{1} / h_{2}\right)^{2}-1}+O\left(h^{4}\right)
$$

Romberg's Integration:
 Iterative application of Richardson's extrapolation

Romberg Integration Algorithm, for any order k

$$
I_{j, k} \simeq \frac{4^{k-1} I_{j+1, k-1}-I_{j, k-1}}{4^{k-1}-1}
$$

For Order 2 (case of previous slide):

$$
k=2, j=1
$$

$$
I_{1,2} \simeq \frac{4 I_{2,1}-I_{1,1}}{3}
$$

a.

b.

Increasing resolution

Romberg's Differentiation: Iterative application of Richardson's extrapolation

'Romberg' Differentiation Algorithm, for any order k

$$
\boldsymbol{D}_{j, k} \simeq \frac{4^{k-1} \boldsymbol{D}_{j+1, k-1}-\boldsymbol{D}_{j, k-1}}{4^{k-1}-1}
$$

For Order 2 (as previous slide, but for differentiation):

$$
k=2, j=1
$$

$$
\boldsymbol{D}_{1,2} \simeq \frac{4 \boldsymbol{D}_{2,1}-\boldsymbol{D}_{l, 1}}{3}
$$

a.

b,

c.

Increasing resolution

1.600800
$\xrightarrow[3: O\left(\mathrm{~h}^{6}\right)]{k} \quad \begin{gathered}\text { Increasing order } \\ 4: \mathrm{O}\left(\mathrm{h}^{8}\right)\end{gathered}$
\qquad

1: $O\left(h^{2}\right)$
2: $O\left(h^{4}\right)$1.367467

Numerical Fluid Mechanics

Fourier (Error) Analysis: Definitions

- Leading error terms and discretization error estimates can be complemented by a Fourier error analysis
- Fourier decomposition:
- Any arbitrary periodic function can be decomposed into its Fourier components:

$$
\begin{aligned}
& f(x)=\sum_{k=-\infty}^{\infty} f_{k} e^{i k x} \quad(k \text { integer, wavenumber) } \\
& \int_{0}^{2 \pi} e^{i k x} e^{-i m x}=2 \pi \delta_{k m} \quad \text { (orthogonality property) } \\
& f_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i k x} d x
\end{aligned}
$$

Using the orthog. property, taking the integral/FT of $f(x)$:

- Note: rate at which $\left|f_{k}\right|$ with $|k|$ decays determine smoothness of $f(x)$
- Examples drawn in lecture: $\sin (x)$, Gaussian $\exp \left(-\pi x^{2}\right)$, multi-frequency functions, etc

Fourier (Error) Analysis: Differentiations

- Consider the decompositions:

$$
f(x)=\sum_{k=-\infty}^{\infty} f_{k} e^{i k x} \quad \text { or } \quad f(x, t)=\sum_{k=-\infty}^{\infty} f_{k}(t) e^{i k x}
$$

- Taking spatial derivatives gives: $\frac{\partial^{n} f}{\partial x^{n}}=\sum_{k=-\infty}^{\infty} f_{k}(t)(i k)^{n} e^{i k x}$
- Taking temporal derivatives gives: $\frac{\partial^{r} f}{\partial t^{r}}=\sum_{k=-\infty}^{\infty} \frac{d^{r} f_{k}(t)}{d t^{t}} e^{i k x}$
- Hence, in particular, for even or odd spatial derivatives:

$$
\begin{array}{ll}
n=2 q & \Rightarrow \quad(i k)^{n}=(-1)^{q} k^{2 q} \\
n=2 q-1 & \Rightarrow \quad(i k)^{n}=-i(-1)^{q} k^{2 q-1} \quad \text { (imaginary) }
\end{array}
$$

Fourier (Error) Analysis: Generic equation

- Consider the generic PDE: $\quad \frac{\partial f}{\partial t}=\frac{\partial^{n} f}{\partial x^{n}}$
- Fourier Analysis: $f(x, t)=\sum_{k=-\infty}^{\infty} f_{k}(t) e^{i k x}$
- Hence:

$$
\sum_{k=-\infty}^{\infty} \frac{d f_{k}(t)}{d t} e^{i k x}=\sum_{k=-\infty}^{\infty} f_{k}(t)(i k)^{n} e^{i k x}
$$

- Thus:

$$
\frac{d f_{k}(t)}{d t}=(i k)^{n} f_{k}(t)=\sigma f_{k}(t) \quad \text { for } \sigma=(i k)^{n}
$$

- And:

$$
f_{k}(t)=f_{k}(0) e^{\sigma t}, \quad f(x, t)=\sum_{k=-\infty}^{\infty} f_{k}(0) e^{i k x+\sigma t}
$$

- "Phase speed":

$$
c=-\sigma / i k
$$

Fourier (Error) Analysis: Generic equation

- Generic PDE, FT:

$$
I(x, t)=\sum_{k=-\infty}^{\infty} f_{k}(0) e^{i k x+\sigma t}
$$

$$
\begin{aligned}
& \frac{d f_{k}(t)}{d t}=\sigma f_{k}(t) \quad \text { for } \sigma=(i k)^{n} \\
& \begin{array}{lll}
n=2 q \quad \Rightarrow \quad(i k)^{n}=(-1)^{q} k^{2 q} \quad \quad \text { (real) } \\
n=2 q-1 \quad \Rightarrow \quad(i k)^{n}=-i(-1)^{q} k^{2 q-1} \quad \text { (imaginary) }
\end{array}
\end{aligned}
$$

- Hence:

$$
\begin{array}{llll}
n=1 & \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} & \sigma=i k & \begin{array}{l}
\text { Propagation: } c=-\sigma / i k=-1 \\
\text { No dispersion }
\end{array} \\
n=2 & \frac{\partial f}{\partial t}=\frac{\partial^{2} f}{\partial x^{2}} & \sigma=-k^{2} & \\
n=3 & \frac{\partial f}{\partial t}=\frac{\partial^{3} f}{\partial x^{3}} & \sigma=-i k^{3} & \text { Decay } \\
n=4 & \frac{\partial f}{\partial t}= \pm \frac{\partial^{4} f}{\partial x^{4}} & \sigma= \pm k^{4} & +: \text { (Fast) Gropagation: } c=-\sigma / i k=+k^{2} \\
n \text { (Fispersion }
\end{array}
$$

- Etc

Fourier Error Analysis: $1^{\text {st }}$ derivatives $\frac{\partial f}{\partial x}$

- In the decomposition: $f(x, t)=\sum_{k=-\infty}^{\infty} f_{k}(t) e^{i x x}$
- All components are of the form: $f_{k}(t) e^{i k x}$
- Exact $1^{\text {st }}$ order spatial derivative: $\frac{\partial f_{k}(t) e^{i k x}}{\partial x}=f_{k}(t) i k e^{i k x}=f_{k}(t) \quad\left(i k e^{i k x}\right)$
- However, if we apply the centered finite-difference ($2^{\text {nd }}$ order accurate):

$$
\begin{aligned}
& \left(\frac{\partial f}{\partial x}\right)_{j}=\frac{f_{j+1}-f_{j-1}}{2 \Delta x} \Rightarrow \\
& \left(\frac{\partial e^{i k x}}{\partial x}\right)_{j}=\frac{e^{i k\left(x_{j}+\Delta x\right)}-e^{i k\left(x_{j}-\Delta x\right)}}{2 \Delta x}=\frac{\left(e^{i k \Delta x}-e^{-i k \Delta x}\right) e^{i k x_{j}}}{2 \Delta x}=i \frac{\sin (k \Delta x)}{\Delta x} e^{i k x_{j}}=i k_{\mathrm{eff}} e^{i k x_{j}} \\
& \text { where } k_{\mathrm{eff}}=\frac{\sin (k \Delta x)}{\Delta x} \quad \text { (uniform grid resolution } \Delta x \text {) }
\end{aligned}
$$

- $k_{\text {eff }}=$ effective wavenumber
- For low wavenumbers (smooth functions): $\quad k_{\text {eff }}=\frac{\sin (k \Delta x)}{\Delta x}=k-\frac{k^{3} \Delta x^{2}}{6}+\ldots$
- Shows the $2^{\text {nd }}$ order nature of center-difference approx. (here, of k by $k_{\text {eff }}$)

Fourier Error Analysis, Cont'd: Effective Wave numbers

- Different approximations $\left(\frac{\partial e^{\mu x}}{\partial x}\right)_{j}$ have different effective wavenumbers
- CDS, $2^{\text {nd }}$ order: $\quad k_{\text {eff }}=\frac{\sin (k \Delta x)}{\Delta x}=k-\frac{k^{3} \Delta x^{2}}{6}+\ldots$
- CDS, $4^{\text {th }}$ order: $\quad k_{\text {eff }}=\frac{\sin (k \Delta x)}{3 \Delta x}(4-\cos (k \Delta x))$
- Pade scheme, $4^{\text {th }}$ order: $\quad i k_{\text {eff }}=\frac{3 i \sin (k \Delta x)}{(2+\cos (k \Delta x)) \Delta x}$

Fig. 3.4. Modified wavenumber for various schemes

Fourier Error Analysis, Cont'd Effective Wave Speeds

Different approximations $\left(\frac{\partial e^{\ell x}}{\partial x}\right)$ also lead to different effective wave speeds:

- Consider linear convection equations: $\frac{\partial f}{\partial t}+c \frac{\partial f}{\partial x}=0$
- For the exact solution: $\quad f(x, t)=\sum_{k=-\infty}^{\infty} f_{k}(0) e^{i k x+\sigma t}=\sum_{k=-\infty}^{\infty} f_{k}(0) e^{i k(x-c t)} \quad$ (since $\sigma=-i k c$)
- For the numerical sol.: if $f=f_{k}^{n m m}(t) e^{i k x} \Rightarrow \frac{d f_{k}^{n m m}}{d t} e^{i k x j}=-f_{k}^{n m m}(t) c\left(\frac{\partial e^{i k x}}{\partial x}\right)_{j}=-f_{k}^{n m m}(t) c\left(i k_{\mathrm{cff}} e^{i e^{i k x}}\right)$
which we can solve exactly (our interest here is only error due to spatial approx.)
$\Rightarrow \quad f_{k}^{n u m}(t)=f_{k}(0) e^{-i k_{\text {cff }} c t}$
$\Rightarrow f^{\text {numerical }}(x, t)=\sum_{k=-\infty}^{\infty} f_{k}(0) e^{i k x-i k_{\mathrm{cf}} c t}=\sum_{k=-\infty}^{\infty} f_{k}(0) e^{i k\left(x-c_{\mathrm{cff}} t\right)}$
$\Rightarrow \frac{c_{e f f}}{c}=\frac{\sigma_{e f f}}{\sigma}=\frac{k_{e f f}}{k} \quad\left(\right.$ defining $\left.\sigma_{\text {eff }}=-i k_{\text {eff }} c=-i k c_{\text {eff }}\right)$
- Often, $c_{\text {eff }} / c<1=>$ numerical solution is too slow.
- Since, $\mathrm{c}_{\text {eff }}$ is a function of the effective wavenumber the scheme is dispersive (even though the PDE is not)

Fig. 3.5. Numerical phase speed for various schemes
© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Source: Lomax, H., T. Pulliam, D. Zingg. Fundamentals of Computational Fluid Dynamics. Springer, 2001.

Evaluation of the Stability of a FD Scheme: Three main approaches

Recall: $\tau_{\Delta x}=\mathcal{L}(\phi)-\hat{\mathcal{L}}_{\Delta x}(\hat{\phi}+\varepsilon)=-\hat{\mathcal{L}}_{\Delta x}(\varepsilon) \quad$ Stability: $\left\|\hat{\mathcal{L}}_{\Delta x}^{-1}\right\|<$ Const. \quad (for linear systems)

- Heuristic stability:
- Stability is defined with reference to an error (e.g. round-off) made in the calculation, which is damped (stability) or grows (instability)
- Heuristic Procedure: Try it out
- Introduce an isolated error and observe how the error behaves
- Requires an exhaustive search to ensure full stability, hence mainly informational approach
- Energy Method
- Basic idea:
- Find a quantity, L_{2} norm e.g. $\sum_{j}\left(\phi_{j}^{n}\right)^{2}$
- Shows that it remains bounded for all n
- Less used than Von Neumann method, but can be applied to nonlinear equations and to non-periodic BCs
- Von Neumann method (Fourier Analysis method)

Evaluation of the Stability of a FD Scheme Energy Method Example

- Consider again:

$$
\frac{\partial \phi}{\partial t}+c \frac{\partial \phi}{\partial x}=0
$$

- A possible FD formula ("upwind" scheme for $\mathrm{c}>0$): $\frac{\phi_{j}^{n+1}-\phi_{j}^{n}}{\Delta t}+c \frac{\phi_{j}^{n}-\phi_{j-1}^{n}}{\Delta x}=0$ ($t=n \Delta t, x=j \Delta x$) which can be rewritten:

$$
\phi_{j}^{n+1}=(1-\mu) \phi_{j}^{n}+\mu \phi_{j-1}^{n} \quad \text { with } \quad \mu=\frac{c \Delta t}{\Delta x}
$$

Evaluation of the Stability of a FD Scheme Energy Method Example

Von Neumann Stability

- Widely used procedure
- Assumes initial error can be represented as a Fourier Series and considers growth or decay of these errors
- In theoretical sense, applies only to periodic BC problems and to linear problems
- Superposition of Fourier modes can then be used
- Again, use, but for the error: $\varepsilon(x, t)=\sum_{\beta=-\infty}^{\infty} \varepsilon_{\beta}(t) e^{i \beta x}$
- Being interested in error growth/decay, consider only one mode:
$\underline{\varepsilon_{\beta}(t) e^{i \beta x} \approx e^{\gamma t} e^{i \beta x}}$ where γ is in general complex and function of $\beta: \gamma=\gamma(\beta)$
- Strict Stability: The error will not to grow in time if

$$
\left|e^{\gamma t}\right| \leq 1 \quad \forall \gamma
$$

- in other words, for $t=n \Delta t$, the condition for strict stability can be written:

$$
\left|e^{\gamma \Delta t}\right| \leq 1 \quad \text { or for } \xi=e^{\gamma \Delta t}, \quad|\xi| \leq 1 \quad \text { von Neumann condition }
$$

Norm of amplification factor ξ smaller or equal to1

MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

