Problem 5.1: The Kolmogorov microscale, the viscous sublayer, and the inertial sublayer

Consider a fully developed, turbulent flow in a smooth-walled, circular pipe of radius a.
(a) Suppose we define a nominal thickness $\delta_{v}$ of the visous sublayer to be equivalent to $y_{+}=5$. On a log-log plot, show the ratio $\delta_{\sqrt{ }} / a$ of the viscous sublayer to the pipe radius for Reynolds number based on diameter from 2000 to $1,000,000$. You may used Blasius's formula for friction factor.
(b) Suppose we say, somewhat arbitrarily, that the shear stress is approximately constant within a distance of the order of $0.1 a$ from the wall (by what fraction of itself does the stress actually vary in this region?), and that the inertial (logarithmic) sublayer starts at $y_{+}=50$. Based on these considerations and the Blasius friction factor correlation, how high do you estimate that the Reynolds number $R e=u_{a v}(2 a) / v$ must be for there to be room for any inertial sublayer at all in the inner region of the flow? Comment.

