Solid Body Rotation-Extra Notes

Whenever we have a coordinate rotation the following holds:
Imagine a vector \underline{v} :

$$
\underline{v}=\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]
$$

in $x-y$ coordinate system and want to calculate the components of \underline{v} in a new coordinate system $x^{\prime}-y^{\prime}$ which comes from θ counterclockwise rotation of $x-y$ coordinate system (Figure $1)$.

Figure 1: Coordinate system $x^{\prime}-y^{\prime}$ is a θ counterclockwise rotation of $x-y$.

$$
\left[\begin{array}{l}
v_{x^{\prime}} \\
v_{y^{\prime}}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \times\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]
$$

If you show the vectors in a row form rather than the column form then the matrix from of this conversion will look different:

$$
\left[\begin{array}{ll}
v_{x^{\prime}} & v_{y^{\prime}}
\end{array}\right]=\left[\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right] \times\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

It is easy to see that both of these matrix representations express the same set of equations for conversion between the two coordinate systems:

$$
\begin{align*}
v_{x^{\prime}} & =v_{x} \cos \theta+v_{y} \sin \theta \\
v_{y^{\prime}} & =v_{x}(-\sin \theta)+v_{y} \cos \theta \tag{1}
\end{align*}
$$

and if you like to get the components in the $x-y$ coordinates from the $x^{\prime}-y^{\prime}$ coordinate then the following holds:

$$
\begin{align*}
& v_{x}=v_{x^{\prime}} \cos \theta-v_{y^{\prime}} \sin \theta \\
& v_{y}=v_{x^{\prime}} \sin \theta+v_{y^{\prime}} \cos \theta \tag{2}
\end{align*}
$$

In the solid body rotation problem we have to convert components from $x-y$ coordinate to $r-\theta$ coordinates:

Figure 2: Coordinate system $r-\theta$ is a θ counterclockwise rotation of $x-y$. Note that here the $\underline{\mathrm{v}}$ vector is drawn for an arbitrary case and has both r and θ components whereas in the rotation problem the r component is zero.

The \underline{v} velocity vector in the polar coordinate for this problem is:

$$
\underline{v}=\left[\begin{array}{l}
v_{r} \underline{e}_{r} \\
v_{\theta} \underline{e}_{\theta}
\end{array}\right]=\left[\begin{array}{c}
0 \\
r \Omega \underline{e}_{\theta}
\end{array}\right]
$$

Using equation (2) we can convert the velocity components from $r-\theta$ coordiantes back to the $x-y$ coordinates:

$$
\begin{aligned}
& v_{x}=v_{r} \cos \theta-v_{\theta} \sin \theta=0 \cos \theta-r \Omega \sin \theta \\
& v_{y}=v_{r} \sin \theta+v_{\theta} \cos \theta=0 \sin \theta+r \Omega \cos \theta
\end{aligned}
$$

Using the fact that $y=r \sin \theta$ and $x=r \cos \theta$ we can simplify it to:

$$
\begin{aligned}
v_{x} & =-y \Omega \\
v_{y} & =x \Omega
\end{aligned}
$$

Now as shown in the class after using the material derivative we can find the acceleration vector $(\underline{a}=D \underline{v} / D t)$ in the $x-y$ coordinate system:

$$
\underline{a}=\left[\begin{array}{ll}
a_{x} & \underline{e}_{x} \\
a_{y} & \underline{e}_{y}
\end{array}\right]=\left[\begin{array}{ll}
-\Omega^{2} x & \underline{e}_{x} \\
-\Omega^{2} & y \\
\underline{e}_{y}
\end{array}\right]
$$

Now using equation (1) we can convert this into the $r-\theta$ coordinates:

$$
\begin{aligned}
& a_{r}=a_{x} \cos \theta+a_{y} \sin \theta=-\Omega^{2} x \cos \theta-\Omega^{2} y \sin \theta \\
& a_{\theta}=a_{x}(-\sin \theta)+a_{y} \cos \theta=\Omega^{2} x \sin \theta-\Omega^{2} y \cos \theta
\end{aligned}
$$

Using the fact that $y=r \sin \theta, x=r \cos \theta$ and $\cos ^{2} \theta+\sin ^{2} \theta=1$ we can simplify it to:

$$
\begin{aligned}
& a_{r}=-r \Omega^{2} \\
& a_{\theta}=0
\end{aligned}
$$

thus:

$$
\underline{a}=\left[\begin{array}{l}
a_{r} \underline{e}_{r} \\
a_{\theta} \underline{e}_{\theta}
\end{array}\right]=\left[\begin{array}{c}
-r \Omega^{2} \underline{e}_{r} \\
0 \underline{e}_{\theta}
\end{array}\right]
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

