MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Particle Kinematics
 Lagrangian and Eulerian Frames - Material Derivatives

The stream function - which will be discussed in more detail later in the course - in cylindrical co-ordinates (r, θ) for flow past a circular cylinder of radius a with clockwise circulation Γ is given by

$$
\begin{equation*}
\psi(r, \theta)=U\left(r-\frac{a^{2}}{r}\right) \sin \theta+\frac{\Gamma}{2 \pi} \ln \left(\frac{r}{a}\right) \tag{1}
\end{equation*}
$$

a) Write the stream function $\psi(x, y)$ in Cartesian co-ordinates, and find the components of the velocity u_{x} and u_{y} in the x and y directions.

Hint: The stream function is defined in terms of the velocity components as

$$
\begin{aligned}
u_{x} & =\frac{\partial \psi(x, y)}{\partial y} \\
u_{y} & =-\frac{\partial \psi(x, y)}{\partial x}
\end{aligned}
$$

b) Derive the ordinary differential equations that govern the particle path lines.
c) Find the equation for the particle trajectory passing through the point $r=2 a, \theta=0$ (or equivalently, $x=2 a, y=0$).
d) Show that a particle on the surface of the cylinder always stays on the cylinder. Find the tangential velocity component of such a particle, and determine the stagnation points.

Hint: In cylindrical co-ordinates,

$$
\begin{aligned}
& u_{r}=\frac{1}{r} \frac{\partial \psi(r, \theta)}{\partial \theta} \\
& u_{\theta}=-\frac{\partial \psi(r, \theta)}{\partial r}
\end{aligned}
$$

e) Sketch the stream lines for the case $\Gamma>4 \pi a U$. What happens as $r \rightarrow \infty$?

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

