2.25 - Fluid Mechanics
 Overview of Lagrangian and Eulerian Descriptions

Lagrangian Description

In the Lagrangian perspective, we follow fluid particles (material points) as they move through the flow. Mathematically, we specify the vector field

$$
\begin{equation*}
\underline{X}\left(\underline{X}_{0}, t\right) \tag{1}
\end{equation*}
$$

where \underline{X} is the position vector of a fluid particle at some time t and \underline{X}_{0} is the position vector of the particle at some reference time, say $t=t_{0}$. That is

$$
\begin{equation*}
\underline{X}_{0}=\underline{X}\left(\underline{X}_{0}, t=t_{0}\right) \tag{2}
\end{equation*}
$$

We defined the Lagrangian velocity as the time derivative of the position vector following a fluid particle:

$$
\begin{equation*}
\underline{V}=\left.\frac{d \underline{X}}{d t}\right|_{\substack{\text { single } \\ \text { particle }}} \tag{3}
\end{equation*}
$$

Eulerian Description

On the other hand, the Eulerian perspective fixates on a particular point in space, and records the properties of the fluid elements passing through that point. Mathematically, specify

$$
\begin{equation*}
\underline{v}(\underline{x}, t) \tag{4}
\end{equation*}
$$

where \underline{v} is the velocity vector at the laboratory coordinate \underline{x} at time t.
One way to connect the Lagrangian and Eulerian descriptions is

$$
\begin{equation*}
\underline{v}\left(\underline{x}=\underset{\text { Eulerian }}{X}\left(\underline{X}_{0}, t\right), t\right)=\frac{d \underline{X}}{d t}\left(\underline{X}_{0}, t\right) . \tag{5}
\end{equation*}
$$

Both sides of equation (5) describe the velocity of the fluid particle that was at \underline{X}_{0} at t_{0}, but is at the position \underline{x} at time t.

2.25 - Fluid Mechanics
 Overview of Lagrangian and Eulerian Descriptions

Material Derivative

The material derivative gives us a way to relate the Lagrangian description to the Eulerian one. It is defined for a quantity F (which could be a scalar or a vector) as

$$
\frac{D F}{D t}=\frac{\partial F}{\partial t}+(\underline{v} \cdot \underline{\nabla}) F
$$

In Cartesian coordinates, this is written as

$$
\frac{D F}{D t}=\left.\frac{\partial F}{\partial t}\right|_{\substack{x, y, z \\ \text { fixed }}}+\left.v_{x} \frac{\partial F}{\partial x}\right|_{\substack{t, y, z \\ \text { fixed }}}+\left.v_{y} \frac{\partial F}{\partial y}\right|_{\substack{t, x, z \\ \text { fixed }}}+\left.v_{z} \frac{\partial F}{\partial z}\right|_{\substack{t, x, y \\ \text { fixed }}}
$$

The material derivative can be used to obtain the ordinary differential equation describing the pathline of a particle. At any instant in time, the particle inhabits some laboratory point, described by \underline{x}. At some time t, the particle position \underline{X} (in Lagrangian coordinates) is therefore equal to \underline{x}. Since the material derivative tells the Lagrangian time derivative in Eulerian coordinates, we can obtain the ODE we seek by setting

$$
\begin{equation*}
\left.\frac{d \underline{X}}{d t}\right|_{\substack{\text { single } \\ \text { particle }}} \equiv \frac{D \underline{\underline{x}}}{D t} \tag{6}
\end{equation*}
$$

The right-hand side can be thought of as the rate of change of the laboratory coordinate of the fluid particle of interest with time. Let us focus only on the x-coordinate of this particle. As shown in class, for this case the material derivative becomes

$$
\begin{equation*}
\left.\frac{d X}{d t}\right|_{\substack{\text { single } \\ \text { particle }}}=\frac{D x}{D t}=\left.\frac{\partial x}{\partial t}\right|_{\substack{x, y, z \\ \text { fixed }}}+\left.v_{x} \frac{\partial x}{\partial x}\right|_{\substack{t, y, z \\ \text { fixed }}}+\left.v_{y} \frac{\partial x}{\partial y}\right|_{\substack{t, x, z, z \\ \text { fixed }}}+\left.v_{z} \frac{\partial x}{\partial z}\right|_{\substack{t, x, y \\ \text { fixed }}}=0+v_{x}(1)+0+0=v_{x} . \tag{7}
\end{equation*}
$$

Similarly, the time evolution of the y-coordinate of the particle is described by

$$
\begin{equation*}
\left.\frac{d Y}{d t}\right|_{\substack{\text { single } \\ \text { particle }}}=\frac{D y}{D t}=\left.\frac{\partial y}{\partial t}\right|_{\substack{x, y, z \\ \text { fixed }}}+\left.v_{x} \frac{\partial y}{\partial x}\right|_{\substack{t, y, z \\ \text { fixed }}}+\left.v_{y} \frac{\partial y}{\partial y}\right|_{\substack{t, x, z \\ \text { fixed }}}+\left.v_{z} \frac{\partial y}{\partial z}\right|_{\substack{t, x, y \\ \text { fixed }}}=0+0+v_{y}(1)+0=v_{y} . \tag{8}
\end{equation*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

